
Part IX: Episodic Memory
Episodic memory (EpMem) in Soar is a mechanism that automatically captures,
stores, and temporally indexes agent state and supports a content-addressable
agent interface to retrieve this autobiographical prior experience. This information
supplements what is contained in short-term working memory and other long-term
memories, such as rules in procedural memory.

1. A Short Demonstration
Before we delve into how an agent can use episodic memory, let’s see an example of
capturing an episode and viewing the contents of the memory.

First, open the Soar Debugger. Then, execute the following command (this can be
loaded from a source file just as any other Soar command):

epmem --set trigger dc
epmem --set learning on
watch --epmem

Now, click the “Step” button twice. If we inspect the trace, and ignore the state no-
change impasses, we see the following message:

NEW EPISODE: 1

This is an indication that a new episode, with id 1, has been automatically stored by
the architecture within the episodic store.

We can view the contents of episodic memory using the epmem --print command,
which expects an episode id as an argument. For example, execute the following
command:

epmem --print 1

Which will output the following result:

(<id0> ^io <id1> ^reward-link <id2> ^superstate nil ^type state)
(<id1> ^input-link <id4> ^output-link <id3>)

To pictorially view the contents of episodic memory, we combine the command-to-
file command, which takes the output of any command in Soar and redirects it to a
file, with the epmem --viz command, which outputs the contents of an episode in
Graphviz format, and uses the same syntax as the epmem --print command. For
example, execute the following command:

command-to-file epmem.gv epmem --viz 1

The result will be a new file in Soar’s current working directory (you can get this
path by executing the pwd command) named epmem.gv. You can open this in any
text editor to see the source code, but more usefully, open it with any Graphviz
renderer (see http://graphviz.org for more detail) to produce the following
diagram:

From both the trace output as well as the Graphviz rendering we can see that
episodic memory has stored most of the top-state of the agent’s working memory at
a particular moment in time. In the following sections we’ll examine in more detail
how to control automatic storage and how agents can retrieve episodic knowledge.

2. Episodic Storage
As we saw in Part 1 of this tutorial, episodic storage is automatic and captures the
top state of the agent’s working memory. To enable storage, episodic memory must
be enabled. By default, all learning mechanisms in Soar are disabled. To enable
episodic memory, issue the following command:

epmem --set learning on

There are a few architectural parameters that are important to control episodic
storage. The first is the event that triggers storage. By default, episodic memory
stores new episodes whenever a WME is added to working memory that has the
output-link as its identifier. However, Soar also supports storing episodes each
decision cycle (“dc”), which is enabled using the following command (which we used
in Part 1 of this tutorial):

epmem --set trigger dc

The next important parameter is the phase during which episodic memory stores
episodes (and processes retrievals, as discussed later). By default, this processing
occurs at the end of the output phase. However, Soar also supports this processing
occurring at the end of the decision phase, which is enabled using the following
command:

epmem --set phase selection

http://graphviz.org/

Finally, it is sometimes the case that certain portions of the agent’s working memory
should be excluded from automatic storage. Episodic memory supports specifying a
set of excluded attributes: if automatic storage encounters an excluded attribute
during a breadth-first walk of working memory, it does not store that WME, nor any
substructure if it was the case that the value of the WME was an identifier. To view
the current excluded set, issue the following command:

epmem --get exclusions

To change the excluded set, issue the following command:

epmem --set exclusions <attribute>

This command toggles the state of an attribute within the set: thus if this command
is executed with an attribute that is already in the excluded set, it is removed from
the set, otherwise it is added. By default, “epmem” and “smem” are in the excluded
set, which is why we do not see these architectural links in the trace/visualization in
Part 1 of this tutorial.

In Part 1, we also enabled trace output that is useful for understanding episodic
memory via the following command:

watch --epmem

This trace option indicates when new episodes are recorded, as well as debugging
information for retrievals, as discussed later.

3. Agent Interaction
Agents interact with episodic memory via special structures in working memory.
Soar automatically creates an epmem link on each state, and each epmem link has
specialized substructure: a command link for agent-initiated actions and a result link
for feedback from episodic memory. For instance, issue the following command:

print --depth 10 <s>

If you read the output carefully you will notice a WME that can be generally
represented as (<state> ^epmem <epmem>) and three additional WMEs that can be
represented as (<epmem> ^command <cmd>), (<epmem> ^result <r>), and
(<epmem> ^present-id <episode id>)

As described in the following sections, the agent, via rules, populates and maintains
the command link and the architecture populates and cleans up the result link. As
episodes are stored, the present-id augmentation updates to indicate the current
episode id, the value of which is a positive integer.

For the agent to interact with episodic memory, this mechanism must be enabled. As
mentioned in Part 2, by default, all learning mechanisms in Soar are disabled and so
you must enable episodic memory via the command in Part 2.

By default, all commands are processed during the agent’s output phase (this can be
changed using the phase parameter, as described in Part 2 of this tutorial) and only
one command can be issued per state per decision.

4. Cue-Based Retrieval
The primary method that an agent can retrieve knowledge from episodic memory is
called a cue-based retrieval: the agent requests from episodic memory an episode
that most closely matches a cue of working-memory elements. The syntax of the
command is (<cmd> ^query <cue>), where <cue> forms the root of the cue.
Conceptually, episodic memory compares the cue to all episodes in the store,
scoring each one, and returns the most recent episode with the maximal score.

Episodes are scored based upon the leaf WMEs in the cue. A leaf WME has either a
value that is a constant, a long-term identifier, or a short-term identifier with no
augmentations. A leaf WME is satisfied, with respect to a particular episode, if there
exists a path, or sequence of WMEs, from the episode root to that leaf WME, where
the attributes of all intermediate WMEs exactly match those in the cue, and short-
term identifiers in the cue variablize to consistently match identifiers in the episode.
This is similar to how variables in the conditions of rules bind to specific identifiers
in working memory. However, as discussed below, episode scoring is disjunctive
with respect to leaf WMEs (i.e. each leaf WME is considered independently),
whereas rule matching is conjunctive with respect to production conditions (i.e. a
rule matches only if all conditions are satisfied). By default, the score of an episode
is simply the number of satisfied leaf WMEs.

Let us consider an example cue, composed of the following WMEs, where N1 is the
value of the query command, as described above:

(N1 ^feature value
 ^id N2)
(N2 ^sub-feature value2
 ^sub-id N3)

Or, visually:

This cue has three leaf WMEs: (N1 ^feature value), (N2 ^sub-feature value2), and
(N2 ^id N3). Now consider the following episode:

The first leaf WME of the cue, (N1 ^feature value), is not satisfied by this episode, as
there is no (E1 ^feature value) WME: (E1 ^feature2 value) has a different attribute
and (E1 ^feature value3) has a different value. Both other leaf WMEs, however, are
satisfied. (N2 ^sub-feature value2) is satisfied by variablizing E1 as N1 and E2 as
N2: (E1 ^id E2) and (E2 ^sub-feature value2). (N2 ^id N3) is satisfied by
variablizing E1 as N1, E3 as N2, and E5 as N3: (E1 ^id E3), (E3 ^sub-id E5). Note that
the substructure of E4 in the episode matches that of N2 in the cue, but there is no
WME (E1 ^id E4), and so E4 is not considered. Thus, this episode, with respect to
the cue, has a score of 2.

Note, however, that it is not possible to unify the cue with the episode: there is no
single identifier in the episode that, when bound as N2 in the cue, satisfies both (N2
^sub-feature value2) and (N2 ^sub-id N3). If an episode gets a perfect score, such
that all leaf WMEs are satisfied, episodic memory attempts to graph match the cue
with the episode (i.e. determine if there exists an isomorphism between the cue and
the episode). So in response to a cue-based retrieval command, episodic memory
will return the most recent graph-matched episode, or, if one does not exist, the
most recent episode with the maximal episode score. For clarity, episode recency is
directly proportional to the episode id, where larger episode id’s are more recent.

Let’s see how the example above works in Soar. Run the Soar Debugger and source
the following rules (these rules are already part of the epmem-tutorial.soar file in
the Agents directory):

sp {propose*init
 (state <s> ^superstate nil
 -^name)
-->
 (<s> ^operator <op> + =)
 (<op> ^name init)}

sp {apply*init
 (state <s> ^operator <op>)
 (<op> ^name init)
-->
 (<s> ^name epmem
 ^feature2 value
 ^feature value3
 ^id <e2>
 ^id <e3>
 ^other-id <e4>)
 (<e2> ^sub-feature value2)
 (<e3> ^sub-id <e5>)
 (<e4> ^sub-id <e6>
 ^sub-feature value2)}

sp {epmem*propose*cbr
 (state <s> ^name epmem
 -^epmem.command.<cmd>)
-->
 (<s> ^operator <op> + =)
 (<op> ^name cbr)}

sp {epmem*apply*cbr-clean
 (state <s> ^operator <op>
 ^feature2 <f2>
 ^feature <f>
 ^id <e2>
 ^id <e3>
 ^other-id <e4>)
 (<e2> ^sub-feature value2)
 (<e3> ^sub-id)
 (<op> ^name cbr)
-->
 (<s> ^feature2 <f2> -
 ^feature <f> -
 ^id <e2> -
 ^id <e3> -
 ^other-id <e4> -)}

sp {epmem*apply*cbr-query
 (state <s> ^operator <op>
 ^epmem.command <cmd>)
 (<op> ^name cbr)
-->
 (<cmd> ^query <n1>)
 (<n1> ^feature value
 ^id <n2>)
 (<n2> ^sub-feature value2
 ^sub-id <n3>)}

Now execute the following commands:

epmem --set trigger dc
epmem --set learning on
watch --epmem

Then click the “Step” button and then the “Run 1 -p” button. Now print out the top
state of working memory (print --depth 10 s1). Notice that the top state contains the
structures of the sample episode above (such as ^feature value), as well as other
WMEs (such as ^superstate nil).

Now click the “Step” button. You should notice in the trace that episode #1 was
stored. Click the “Run 1 -p” button to apply the cbr operator and print the top state
of working memory (print --depth 10 s1). Notice that the structures of the sample
episode have been removed and that the sample cue has been added to the
command structure of the epmem link.

Now click the “Run 1 -p” button. Episodic memory stored another episode (#2) and
then processed the cue-based query. The trace contains the following text:

CONSIDERING EPISODE (time, cardinality, score): (1, 2, 2.000000)
NEW KING (perfect, graph-match): (false, false)

The first line indicates that episodic memory compared the cue to episode #1 (i.e.
time=1), found that the cardinality of the set of satisfied leaf WMEs was 2, and thus
the episode was scored as 2. Since this was the first considered episode, it is
indicated as “king” [of the mountain]. However, since the episode did not have a
perfect score (2 out of 3), graph-match was not attempted and was thus not
successful. Since episode #2 did not have any features in common with the cue
(application of the cbr operator removed these structures), episodic memory did not
consider it as a performance optimization.

Now print the full contents of the episodic memory link (print --depth 10 e1):

(E1 ^command C1 ^present-id 3 ^result R2)
 (C1 ^query N1)
 (N1 ^feature value ^id N2)
 (N2 ^sub-feature value2 ^sub-id N3)
 (R2 ^cue-size 3 ^graph-match 0 ^match-cardinality 2
 ^match-score 2.^memory-id 1
 ^normalized-match-score 0.6666666666666666 ^present-id 3
 ^retrieved R4 ^success N1)
 (R4 ^feature value3 ^feature2 value
 ^id I5 ^id I6 ^io I4 ^name epmem
 ^operator* O5 ^other-id O4 ^reward-link R5
 ^superstate nil ^type state)
 (I5 ^sub-feature value2)
 (I6 ^sub-id S3)
 (I4 ^input-link I7 ^output-link O6)

 (O5 ^name cbr)
 (O4 ^sub-feature value2 ^sub-id S4)

The result structure indicates that the retrieval was successful, has a link to the full
episode contents (rooted at R4), and has meta-data about the cue-matching process,
with respect to the retrieved episode. Details of these augmentations are in the
Episodic Memory chapter of the Soar Manual. Note that a WME with an “operator*”
attribute (such as: R4 ^operator* R5) in a retrieved episode represents an
acceptable preference WME in the original episode.

There are optional modifiers to cue-based queries, including the ability to prohibit
specific episodes from being retrieved and indicating features that are not desirable
in the retrieved episode. More information on this functionality is in the Episodic
Memory chapter of the Soar Manual.

5. Temporal Progression
Another way the agent can gain access to episodes is by retrieving the episode that
came temporally before/after the last episode that was retrieved. The syntax of
these commands, respectively, are (<cmd> ^previous <id>) and (<cmd> ^next <id>),
where <id> is any identifier.

As an example, add the following rules to our agent from Part 4 of this tutorial
(these rules are already part of the epmem-tutorial.soar file in the Agents directory):

sp {epmem*propose*next
 (state <s> ^name epmem
 ^epmem.command.query)
-->
 (<s> ^operator <op> + =)
 (<op> ^name next)}

sp {epmem*apply*next
 (state <s> ^operator <op>
 ^epmem.command <cmd>)
 (<op> ^name next)
 (<cmd> ^query <q>)
-->
 (<cmd> ^query <q> -
 ^next <next>)}

These rules will retrieve the episode that temporally proceeds the episode retrieved
in the previous part of this tutorial.

Click the “Step” button, then the “Run 1 -p” button. Now print the episodic memory
link (print --depth 10 e1). Notice that the query command has been replaced with a
next command. Note that the results of the previous commands are still in working
memory: these will be automatically cleaned by episodic memory when the next
command is processed.

Now click the “Run 1 -p” button and print the episodic memory link (print --depth 10
e1):

(E1 ^command C1 ^present-id 4 ^result R2)
 (C1 ^next N4)
 (R2 ^memory-id 2 ^present-id 4 ^retrieved R6 ^success N4)
 (R6 ^io I8 ^name epmem ^operator* O7 ^reward-link R
 ^superstate nil ^type state)
 (I8 ^input-link I9 ^output-link O8)
 (O7 ^name next)

The result structure has been cleaned of old structures and now shows that the
command was successful and episode #2 was retrieved (with all of its original
contents).

You now have some basic understanding of using episodic memory. Read the
Episodic Memory chapter of the Soar manual for additional detail and functionality.

	Part IX: Episodic Memory
	1. A Short Demonstration
	2. Episodic Storage
	3. Agent Interaction
	4. Cue-Based Retrieval
	5. Temporal Progression

