
Part VIII: Semantic Memory
Semantic memory (SMem) in Soar is a mechanism that allows agents to deliberately
store and retrieve objects that are persistent. This information supplements what is
contained in short-term working memory and other long-term memories, such as
rules in procedural memory.

1. The Semantic Store
Before we delve into how an agent can use semantic memory, let’s see an example of
preloading knowledge and viewing the contents of the memory.

First, open the Soar Debugger. Then, execute the following command (this can be
loaded from a source file just as any other Soar command):

smem --add {
 (<a> ^name alice ^friend)
 (^name bob ^friend <a>)
 (<c> ^name charley)
}

As we shall see in a moment, executing this command adds three objects to semantic
memory. In general, the smem --add command is useful to preload the contents of
large knowledge bases in Soar.

We can view the contents of semantic memory using the following command:

smem --print

Which will output the following result:

(@A1 ^friend @B1 ^name alice [+1.000])
(@B1 ^friend @A1 ^name bob [+2.000])
(@C3 ^name charley [+3.000])

Note first that the variables from the smem --add command have been instantiated
as specific identifiers (<a> as @A1, as @B1, and <c> as @C3). Additionally, the
identifiers have the at sign (@) as a prefix. All identifiers in semantic memory are
persistent, and thus we call them long-term identifiers (or LTIs), in contrast to all
other identifiers, which are short-term. When printed, long-term identifiers are
prefixed by the @ symbol and, when depicted, are shown using a double circle. The
number in square brackets is the bias value of the object, used to break ties during
retrievals, a topic to which we shall return later. Finally, unlike working memory
and rules, the knowledge in semantic memory need not be connected, nor linked
directly or indirectly, to a state.

To pictorially view the contents of semantic memory, we combine the command-to-
file command, which takes the output of any command in Soar and redirects it to a
file, with the smem --viz command, which outputs the contents of semantic memory
in Graphviz format. For example, execute the following command:

command-to-file smem.gv smem --viz

The result will be a new file in Soar’s current working directory (you can get this
path by executing the pwd command) named smem.gv. You can open this in any text
editor to see the source code, but more usefully, open it with any Graphviz renderer
(see http://graphviz.org for more detail) to produce the following diagram:

Now that we have seen the contents of semantic memory, you can confirm that none
of this knowledge is present in any of the agent’s other memories. For instance,
execute the following commands to print the contents of working and procedural
memories:

print --depth 100 <s>
print

You notice that the contents of the semantic store can be completely independent of
the other memories, though, as discussed later, an agent can access and modify the
store over time.

We are now done with this example and wish to clear the semantic store. However,
long-term identifiers are persistent and can permeate other memories (such as
through chunking). Therefore, in order to clear the store, we also need to clear all
other memories. To do this we issue a special command:

smem --init

The agent is now reinitialized, as you can verify by printing the contents of working
memory, procedural memory, and now semantic memory.

2. Agent Interaction
Agents interact with semantic memory via special structures in working memory.
Soar automatically creates an smem link on each state, and each smem link has

http://graphviz.org/

specialized substructure: a command link for agent-initiated actions and a result link
for feedback from semantic memory. For instance, issue the following command:

print --depth 10 <s>

If you read the output carefully you will notice a WME that can be generally
represented as (<state> ^smem <smem>) and two additional WMEs that can be
represented as (<smem> ^command <cmd>) and (<smem> ^result <r>).

As described in the following sections, the agent, via rules, populates and maintains
the command link and the architecture populates and cleans up the result link.

For the agent to interact with semantic memory, this mechanism must be enabled.
By default, all learning mechanisms in Soar are disabled. To enable semantic
memory, issue the following command:

smem --set learning on

3. Agent Storage and Modification
An agent stores an object to semantic memory by issuing a store command. The
syntax of a store command is (<cmd> ^store <id>) where <cmd> is the command
link of a state and <id> is an identifier.

An agent can issue multiple store commands simultaneously, and the commands are
processed at the end of the phase in which they are issued. A store command is
guaranteed to succeed and the response from the architecture will be a success
WME: (<r> ^success <id>), where <r> is the result link of the state on which the
store command was issued and <id> was the value of the store command.

A store command stores the identifier that is the result of the command, as well as
any augmentations of that identifier. The command is not recursive. If the identifier
to be stored was not long-term, it is changed in place to a long-term identifier. If it
was already in semantic memory, the augmentations of the long-term identifier in
semantic memory are overridden.

Let’s see an example. Source the following rules into the Soar Debugger (they are
available in the smem-tutorial.soar file within the Agents directory).

sp {propose*init
 (state <s> ^superstate nil
 -^name)
 -->
 (<s> ^operator <op> +)
 (<op> ^name init)}

 sp {apply*init
 (state <s> ^operator.name init
 ^smem.command <cmd>)
 -->
 (<s> ^name friends)
 (<cmd> ^store <a> <c>)
 (<a> ^name alice ^friend)
 (^name bob ^friend <a>)
 (<c> ^name charley)}

sp {propose*mod
 (state <s> ^name friends
 ^smem.command <cmd>)
 (<cmd> ^store <a> <c>)
 (<a> ^name alice)
 (^name bob)
 (<c> ^name charley)

-->
 (<s> ^operator <op> +)
 (<op> ^name mod)}

 sp {apply*mod
 (state <s> ^operator.name mod
 ^smem.command <cmd>)
 (<cmd> ^store <a> <c>)
 (<a> ^name alice)
 (^name bob)
 (<c> ^name charley)
 -->
 (<a> ^name alice -)
 (<a> ^name anna
 ^friend <c>)
 (<cmd> ^store -)
 (<cmd> ^store <c> -)}

Now click the “Step” button to run till the decision phase and notice that the init
operator is selected. Now, click the “Watch 5” button and then the “Run 1 -p” button
to watch as the operator is applied. Below is part of the trace that should be
produced. If you do not see this part of this trace in your run, be sure that you
enabled semantic memory (see section above).

--- apply phase ---
--- Firing Productions (PE) For State At Depth 1 ---
Firing apply*init
-->
(C3 ^name charley + :O)
(B1 ^friend A1 + :O)
(B1 ^name bob + :O)
(A1 ^friend B1 + :O)
(A1 ^name alice + :O)

(C2 ^store C3 + :O)
(C2 ^store B1 + :O)
(C2 ^store A1 + :O)
(S1 ^name friends + :O)
--- Change Working Memory (PE) ---
=>WM: (25: C3 ^name charley)
=>WM: (24: B1 ^friend A1)
=>WM: (23: B1 ^name bob)
=>WM: (22: A1 ^friend B1)
=>WM: (21: A1 ^name alice)
=>WM: (20: C2 ^store A1)
=>WM: (19: C2 ^store B1)
=>WM: (18: C2 ^store C3)
=>WM: (17: S1 ^name friends)
--- Change Working Memory (PE) ---
=>WM: (28: R3 ^success @A1)
=>WM: (27: R3 ^success @B1)
=>WM: (26: R3 ^success @C3)

Notice that the apply*init rule fired and added 3 store commands to working
memory, where the identifiers to be stored are, initially, not long-term, and whose
augmentations mirror the contents of the smem --add command in Part 1 of this
tutorial. Then, at the end of the elaboration phase, semantic memory processed the
command, converted the identifiers to long-term, and added status for each
command.

Now, try printing the contents of semantic memory using the smem --print
command. You will see that semantic memory now has the same contents as after
using the smem --add command in Part 1.

Application of the next operator modifies the contents of semantic memory by
overriding the contents of an existing long-term identifier (@A1). Click the “Step”
button to select the next operator (mod) and then click the “Run 1 -p" button to
apply the operator:

Firing apply*mod
-->
(C2 ^store @C3 - :O)
(C2 ^store @B1 - :O)
(@A1 ^friend @C3 + :O)
(@A1 ^name anna + :O)
(@A1 ^name alice - :O)
--- Change Working Memory (PE) ---
=>WM: (33: @A1 ^name anna)
=>WM: (32: @A1 ^friend @C3)
<=WM: (21: @A1 ^name alice)
<=WM: (18: C2 ^store @C3)
<=WM: (19: C2 ^store @B1)
--- Change Working Memory (PE) ---
<=WM: (26: R3 ^success @C3)
<=WM: (27: R3 ^success @B1)

You will notice in the trace that the store commands for @B1 and @C3 are removed
by the application rule, and that augmentations of @A1 are removed and added.
Then, at the end of the elaboration phase, semantic memory cleans up the status
information for the old store commands.

Now, print the contents of semantic memory using the smem --print command:

(@A1 ^friend @B1 @C3 ^name anna [+4.000])
(@B1 ^friend @A1 ^name bob [+2.000])
(@C3 ^name charley [+3.000])

Notice that the augmentations of @A1 have indeed changed in semantic memory to
reflect the new store command, while @B1 and @C3 remain unchanged.

4. Non-Cue-Based Retrieval
The first way an agent can retrieve knowledge from semantic memory is called a
non-cue-based retrieval: the agent requests from semantic memory all of the
augmentations of a known long-term identifier. The syntax of the command is
(<cmd> ^retrieve <lti>) where <lti> is a long-term identifier.

As an example, add the following three rules to our agent from Part 3 of this tutorial
(these rules are already part of the smem-tutorial.soar file in the Agents directory):

sp {propose*ncb-retrieval
 (state <s> ^name friends
 ^smem.command <cmd>)
 (<cmd> ^store <a>)
 (<a> ^name anna
 ^friend <f>)
-->
 (<s> ^operator <op> + =)
 (<op> ^name ncb-retrieval
 ^friend <f>)}

sp {apply*ncb-retrieval*retrieve
 (state <s> ^operator <op>
 ^smem.command <cmd>)
 (<op> ^name ncb-retrieval
 ^friend <f>)
 (<cmd> ^store <a>)
-->
 (<cmd> ^store <a> -
 ^retrieve <f>)

sp {apply*ncb-retrieval*clean
 (state <s> ^operator <op>
 ^smem.command <cmd>)
 (<op> ^name ncb-retrieval
 ^friend <f>)
 (<f> ^<attr> <val>)
-->
 (<f> ^<attr> <val> -)}

These rules retrieve all the information about one of @A1’s two friends (selected
randomly) and remove the friend’s augmentations (such as name and/or friend)
from working memory.

Unlike store commands, all retrievals are processed during the agent’s output phase
and only one retrieval command can be issued per state per decision.

Now click the “Step” button and notice that one of the two ncb operators is selected.
Click “Run 1 -p" to see the application rule create a retrieve command, requesting
information about one of the two friends, as well as remove that friend’s
augmentations from working memory. Then click the “Run 1 -p" button again to
proceed through the output phase. Finally, print the full contents of the smem link
(print --depth 10 s2):

(S2 ^command C2 ^result R3)
 (C2 ^retrieve @C3)
 (@C3 ^name charley)
 (R3 ^retrieved @C3 ^success @C3)

We see that semantic memory has retrieved and added to working memory the
name of the friend, as well as indicated status for this command (success). Your run
may have retrieved @B1 instead, as a result of the random selection process:

 (S2 ^command C2 ^result R3)
 (C2 ^retrieve @B1)
 (@B1 ^friend @A1 ^name bob)
 (R3 ^retrieved @B1 ^success @B1)

Note that had the retrieve command been issued with an identifier that was not
long-term, the status would have been failure and there would be no retrieved
structure. Note also that retrieved knowledge is limited to the augmentations of the
long-term identifier: like the store command, the retrieve command is not recursive.

5. Cue-Based Retrieval
The second way an agent can retrieve knowledge from semantic memory is called a
cue-based retrieval: the agent requests from semantic memory all of the
augmentations of an unknown long-term identifier, which is described by a subset
of its augmentations. The syntax of the command is (<cmd> ^query <cue>), where
the desired augmentations all have <cue> as their identifier.

The augmentations of the cue form hard constraints, based upon the value of each
WME. If the value of the WME is a constant (string, integer, or float) or long-term
identifier, then any retrieval is required to have exactly the attribute/value pair
specified. If the value of the WME is a short-term identifier, then any retrieval is
required to have an augmentation that has the same attribute, but the value is
unconstrained.

As an example, add the following two rules to our agent from Part 4 of this tutorial
(these rules are already part of the smem-tutorial.soar file in the Agents directory):

sp {propose*cb-retrieval
 (state <s> ^name friends
 ^smem.command <cmd>)
 (<cmd> ^retrieve)
-->
 (<s> ^operator <op> + =)
 (<op> ^name cb-retrieval)}

sp {apply*cb-retrieval
 (state <s> ^operator <op>
 ^smem.command <cmd>)
 (<op> ^name cb-retrieval)
 (<cmd> ^retrieve <lti>)
-->
 (<cmd> ^retrieve <lti> -
 ^query <cue>)
 (<cue> ^name <any-name>
 ^friend <lti>)}

These rules retrieve an identifier that meets two constraints: (1) it has an
augmentation where the attribute is “name”, but the value can be any symbol, and
(2) it has an augmentation where the attribute is “friend” and the value is the long-
term identifier retrieved as a result of applying the operator in Part 3.

As a reminder, all retrievals are processed during the agent’s output phase and only
one retrieval command can be issued per state per decision.

So now click the “Step” button and then click the “Run 1 -p" to see the application
rule create a query command, as well as remove the previous retrieve command
from working memory. Then click the “Run 1 -p" button again to proceed through
the output phase. Finally print the contents of the smem link (print --depth 10 s2):

(S2 ^command C2 ^result R3)
 (C2 ^query C4)
 (C4 ^friend @C3 ^name A2)
 (@C3 ^name charley)
 (R3 ^retrieved @A1 ^success C4)
 (@A1 ^friend @B1 ^friend @C3 ^name anna)

We see that semantic memory has retrieved and added to working memory the
identifier @A1 and all of its augmentations, as well as indicated status for this
command (success). If in Part 4 of this tutorial your agent retrieved @B1, here is the
output of the previous print command:

 (S2 ^command C2 ^result R3)
 (C2 ^query C4)
 (C4 ^friend @B1 ^name A2)
 (@B1 ^friend @A1 ^name bob)
 (R3 ^retrieved @A1 ^success C4)

 (@A1 ^friend @B1 ^friend @C3 ^name anna)

Note that had no long-term identifier in semantic memory satisfied the constraints
of the query command cue, the status would have been failure and there would be
no retrieved structure. Note also that retrieved knowledge is limited to the
augmentations of the long-term identifier: like the store command, retrievals are
not recursive. We see this in the outputs above as one friend has augmentations (as
a result of the retrieve command in Part 4), whereas the other does not.

If multiple identifiers had satisfied the constraints of the cue (such as if the cue had
only a WME with “name” as the attribute and a short-term identifier as the value),
then the long-term identifier with the largest bias value is returned. By default, the
bias value is a monotonically increasing integer, reflecting the recency of the last
storage or retrieval of an object.

It is also possible to prohibit one or more long-term identifiers from being retrieved.
For more information on this any many additional capabilities of semantic memory,
read the Semantic Memory chapter of the Soar Manual.

	Part VIII: Semantic Memory
	1. The Semantic Store
	2. Agent Interaction
	3. Agent Storage and Modification
	4. Non-Cue-Based Retrieval
	5. Cue-Based Retrieval

