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Abstract—Effects of performance motivation on task per-
formance have been observed empirically [1]. In this study,
we explore one such result, the effects of assigned goals on
performance of the well-studied Kanfer-Ackerman air traffic
control task. We argue that the phenomenon observed in this
task can be attributed to computationally expressible cognitive
mechanisms defined by the CLARION cognitive architecture. In
particular, we show that the performance variation between goal
conditions can be explained by differences in explicit and implicit
processing that are the result of external goal-setting.

I. INTRODUCTION

Control of complex dynamic systems (dynamic decision
making) is a task common in many practically and theo-
retically interesting scenarios [2]. One such dynamic control
problem is that of scheduling. Scheduling problems are those
where the goal is to temporally situate and manage discrete
objects to achieve some objective [3]. A common paradigm
for studying human scheduling performance is that of class
scheduling [4]-[6]. Another is control of production or other
dynamic systems [2], [7]-[9]. However, our research is focused
on a specific scheduling paradigm that has received significant
attention in applied psychology, the air traffic control task [10],
[11].

The air traffic control task can be considered complex
according to standard task complexity measures [6], [12]; it is
also considered cognitively complex for a scheduling task [3],
thus making it an interesting and substantial domain to study.
Similar empirical findings, as obtained in [10], have been
replicated using an human resources staffing task [13] and
a class scheduling task [6]. This suggests that the underlying
phenomena is significant and somewhat generalizable, mak-
ing it a reasonable paradigm for simulation using a unified
computational theory of cognition (such as CLARION).

In the next section of this paper, we describe the Kanfer
Ackerman air traffic control (KA-ATC) task and the experi-
mental result of interest. We will then discuss (in sections III
and IV) the prior work in cognitive modeling and analyses
of the task, the motivation for the current work, and the
theoretical foundations. We then (in section V) present the
details for how these theories can be computationally ex-
pressed using the CLARION cognitive architecture. The next
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TABLE I
RULES FOR USE OF SHORT RUNWAYS.

Type Wind Condition
747 Never Never
727 0-20 Knots or Dry

DCI0 < 40 Knots  and Not Icy
Prop Any Any

Note: All aircraft can always use long runways.

section demonstrates how the model can be used to capture
and provide explanations for the KA-ATC task performance
by comparing the results of our simulations to the human data.
Finally, we will conclude with a general discussion and suggest
some implications for future work.

II. TASK DESCRIPTION

The task of interest is the well-used Kanfer-Ackerman
air traffic control (KA-ATC) task [10], [14]. In this task,
participants act as air traffic controllers, whose job is to
land incoming aircraft safely and efficiently. These incoming
aircraft arrive every seven seconds on average, and each
aircraft must be maneuvered through a series of holding
pattern levels (three levels, four positions in each level) before
being assigned a runway. The runway that may be used is
dependent on the aircraft type and the current weather and
runway conditions as (shown in Table I). Furthermore, each
aircraft is given only four to six minutes of fuel before it
crashes. The following rules govern proper operation:

1) Aircraft must move down the holding pattern one level

at a time

2) Aircraft must land into the wind

3) Aircraft must land from the bottom level of the holding

pattern

4) Only one aircraft can be on a runway at any given time

5) The runway on which an aircraft can land is determined

by the aircraft type and weather conditions (see Table I)

6) Aircraft with less than three minutes of fuel must land

immediately

When an aircraft is called into the holding pattern from the
incoming queue, it may be placed into any available holding
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Fig. 1. KA-ATC task screen layout from [15]. The holding pattern is depicted
in section (a), the runways in section (b), the current score in section (c),
current conditions in section (d), incoming queue in section (e), and other
messages and rules in section (f).

pattern positions. Once placed, the participant becomes aware
of the aircraft type and the fuel remaining (4-6 minutes). No
fuel is consumed while an aircraft is waiting in the incoming
queue.

Once an aircraft is assigned a runway on which to land from
the bottom level of the holding pattern (Level 1), it takes fifteen
seconds for that aircraft to use and exit the runway. During
this time, no other aircraft can be assigned to that runway
(Rule #4).

Points are awarded to the participants based on the number
of aircraft landed (+50 each). Points are deducted for each rule
that is violated (-10 per violation or per minute of violation
of Rule #6) and for each aircraft that crashes (-100 each).

Finally, we note that subjects performed the task at a
computer terminal as depicted in Fig. 1.

Result

Of particular interest is the impact of performance mo-
tivation that was observed in Kanfer and Ackerman’s ex-
periment #3 [10]. In this experiment, subjects were divided
into no-goal (“do your best”) and difficult performance goal
(“achieve a score of 2200”) groups. The target achievement
level for the performance goal group was chosen, based on
earlier experiments, such that only 10% of the participants
are expected to be capable of success. It was observed that
both high- and low-ability participants (as determined by
ASVAB scores) performed worse in the performance goal
condition under procedural pre-training. The procedural pre-
training enables the participants to learn the mechanics of the
task (i.e., the required keystrokes), but not the rules that govern
the system. This degradation in performance was initially
thought to be a contradiction to goal-setting theory, and was
thus an interesting result.

We restrict our work to this procedural pre-training case as
we are more interested in the higher level cognitive dynamics
rather than the motor control aspects. Lee and Anderson [16]
showed that motor speedup accounts for a significant amount
of performance improvement in an earlier study, providing

further support for exploring only the procedural pre-training
case (i.e., to avoid additional confounds).

Note that a second test condition, in which the partici-
pants were engaged in a pre-training session that focused on
systematically learning the rules, did not exhibit the same
performance detriment that was associated with the difficult
goal condition. This test condition is not covered here (but
see Further Work section).

Along with the theory presented in [10], both of these results
can alternatively be explained by goal-setting theory [1], [5],
[6]. The following section will briefly review the relevant
aspects of this theory and will discuss how they can be
computationally expressed using CLARION.

III. PRIOR ANALYSIS AND MODELING WORK

Different aspects of the KA-ATC task have been well
studied by other researchers. All of the work described below
utilized data published by the Office of Naval Research which
is no longer available. The study that was predominantly
analyzed and modeled which used undergraduates as subjects
and did not contain motivational considerations [14].

Lee et al. [17] identified two strategic indicators of perfor-
mance evident in the data: initial hold level, and efficient use
of runways on wind direction change (i.e., time from change to
first aircraft landed). They found that half of the subjects learn
to insert aircraft into the first level of the holding pattern only.
This saves the participant six to twelve keystrokes for each
landing. This “hold one” strategy was further explored by John
and Lallement [18]. They consider the initial hold level for
each aircraft over time as well as observed patterns of filling
and emptying the hold levels. Three patterns are identified:
stacked, sequential, and opportunistic. Stacked pattern is one
where the participant fills the hold levels before landing them
all. Sequential is the case where the participant attends to one
aircraft at a time. Cases where the participant is attending to
multiple aircraft at a time to take advantage of any slack time
is called opportunistic behavior. This opportunistic behavior
was found to significantly improve performance.

Shifts in strategy were also considered in [18]. Many
participants were found to shift strategies throughout the trials,
while some were not found to exhibit any consistent strategy.
Both abrupt and gradual shifts were observed, however most
of the shifts (78%) were gradual.

A detailed task analysis was performed in [16] which
described functional, unit-level, and keystroke-level subtasks.
The authors showed that learning was uniform across the
identified subtasks. All of the subtasks identified (unit-task,
functional, and keystroke) exhibited power law (i.e., con-
sistent) learning. Lee and Anderson [16] performed another
experiment using the KA-ATC task while capturing the output
of eye-tracking software. Task-relevant regions of the screen
were found to be aircraft type, fuel level, and runway. Though
weather conditions are important, they are relatively static and
therefore result in low gaze percentages.

An ACT-R model of skilled performance was created by
Lee and Anderson [19]. This model captured only expert



performance. A later ACT-R model has been created to ac-
count for learning of the task which implements a production
composition theory of procedural skill learning [15], [20].
This theory, which is built on the idea of chunking [21] and
knowledge compilation [22], posits that new productions are
created from exiting procedures which result in a reduction
in memory retrieval and rule specialization. In this way,
the authors are able to model the speed-up learning which
takes place in participants. The declarative memory and goal
structures are built a priori using their earlier task analysis
results [16]. The resulting model interacted directly with the
task and maintained default ACT-R parameters. The authors
note that only one possible strategy was implemented and that
the declarative knowledge that was built into the model had
to be learned by the participants during the early trials.

Implications

These prior results provide several important implications
for the modeling work presented herein. Two forms of learning
are found: strategy development, and speed up [16], [18]. Fur-
ther, strategy shifts are predominantly gradual [18] suggesting
an implicit learning process. Nonetheless, the existence of
abrupt changes also suggests that learned strategies can be
reasoned upon [18], and thus should be explicit.

The prior work which employed eye tracking during task
performance suggest that the relevant inputs are aircraft type
for each hold level, fuel level (only during early stages of
learning), and runway status [16]. We will further include
weather conditions as it is clear that though participants spend
only a small percentage of the time looking at the weather
area of the screen, knowledge of the current conditions is
required. Note that in this work we are not concerned with the
presentation of the information and requisite visual processing,
but rather the dynamic decision making after these relevant
inputs have been accurately perceived.

The work reviewed here did not consider the strategic
learning process itself (i.e., how the strategies were developed)
or the motivational impact that was observed in [10]. This is
the focus of the study undertaken herein. We show how the
theoretical work in goal-setting and anxiety effects map to
motivational mechanisms and parameters in the CLARION
cognitive architecture and explore the resulting learning and
performance effects.

I'V. THEORETICAL BACKGROUND

In this section, we review the theoretical background under-
pinning the effects of motivation on learning. While Kanfer
and Ackerman posit an attention theory [10], there has also
been a motivation-based theory [6] which is more relevant to
the modeling work undertaken in this study.

A. Goal-Setting Theory

Edward Lock and Gary Latham have been studying mo-
tivational effects of goal setting on performance for four
decades [1], [23]. Notice that goal setting is a self-regulating

mechanism [1]. This theory originally posited that perfor-
mance is positively correlated with the difficulty of the specific
goal. The theory has been expanded to suggest that in cases
where the participant has yet to gain complete knowledge of
how to perform the task a performance goal will decrease
performance while a (difficult) learning goal will increase per-
formance [5]. Goals have several mechanisms, one of which
is to direct attention toward relevant cognitive activities and
away from irrelevant activities. Several moderators of the goal-
performance relation have been identified. Two relevant (and
related) ones are commitment and self-efficacy. They stress
that goals cannot only be “assigned”, but must be committed
to by the participant and that the participant’s confidence in
meeting the goal (self-efficacy) affects the personal goal and
thus performance. In cases where the participant has low self-
efficacy (i.e., the participant has low confidence in his or her
ability to meet the goal), anxiety is developed which inhibits
learning and subsequent performance [1].

This theory suggests that cases wherein a difficult per-
formance goal is present and self-efficacy is high (i.e., par-
ticipants have learned the task) that attention (i.e., explicit
processing) will be allocated to the achievement of the goal
and thus improve performance. However, when a task is not
yet learned, this added attention inhibits learning and thus
performance. The experiment of interest falls into this second
category as the participants are relatively unfamiliar with the
task.

B. Anxiety Effects

Several studies focusing on the effect of anxiety on task
performance (e.g., see [24]-[28]) suggest that two (somewhat
opposing) outcomes may occur as a result of elevated anx-
iety levels. The first possibility is that, in situations where
anxiety levels are relatively low, individuals may choose to
refocus their attention towards explicit control over a task.
This increase in explicit monitoring [27], [29]-[31] has been
shown to have two possible effects. In situations where tasks
are naturally more explicit, performance may be improved.
However, in situations where tasks are either well learned (i.e.,
proceduralized) or naturally more implicit, focusing additional
attention on the explicit steps may have a deleterious affect on
performance.

The second possible outcome of elevated anxiety levels
(usually referred to as distraction theory [30]) is that, in situa-
tions where anxiety levels are especially heightened, cognitive
resources must be reallocated in order to directly attend to the
anxiety experience itself. Accordingly, task-related decisions
must be made using more reactive (implicit) processes. The
result is that task performance is typically hindered [26], [27].
It should be noted here that, while most studies on anxiety
tend to confirm this outcome, other studies have also suggested
that heightened anxiety levels may, in fact, have a somewhat
different effect on learning tasks, especially when those tasks
are naturally more implicit [28].

While these theories may seem opposing to one another, we
have previously contended that they can actually be unified



using the inverted U-curve theory ( [24], [25], [32], [33]).The
working hypothesis is that when anxiety increases, it leads the
individual to become more controlled (more explicit) while
making action decisions. However, when anxiety reaches a
certain higher level, it can begin reducing control and the
individual may revert to more automatic, implicit processes.
Depending on the specific dynamics of a task, the effects of
anxiety can either enhance or degrade learning and perfor-
mance.

By combining relevant concepts from these theories, we
can posit that, for the complex air-traffic control task, difficult
performance goals should have an overall negative impact on
learning and performance. However, for those individuals with
high self-efficacy, anxiety should generally be lower than for
other individuals (with lower self-efficacy). This allows them
to apply the more instinctual (implicit) bottom-level processes,
which ultimately improves performance (as implicit processes
are more attuned to capturing the subtle complexities of the
task). However, when heightened anxiety levels result from
low self-efficacy, it forces individuals to shift their decision-
making strategies towards more explicit processes. For the
air-traffic control task, this increase in explicit processing has
the effect of hindering the implicit learning mechanisms, thus
degrading performance.

V. A CLARION-BASED COMPUTATIONAL MODEL

The following subsections will outline the details of the
proposed computational model and discuss how this model
can be applied to the simulation and explanation of the
participants’ performance of the air-traffic control task using
the theoretical framework presented previously.

A. The CLARION Cognitive Architecture

CLARION (the computational cognitive architecture) has
previously been used as a means for computationally sim-
ulating and thus theoretically interpreting various existing
findings related to explicit-implicit processing (i.e., cognitive
control versus automaticity) in the context of motivational
(i.e., drive level) changes [24], [25]. Therefore, it is our belief
that CLARION can also be applied to performance-oriented
anxiety-inducing situations.

CLARION is a well-established cognitive architecture (see,
e.g., [34]-[38]) that is based on two basic assumptions:
representational differences and learning differences of two
different types of knowledge — implicit vs. explicit [36], [37]
— among other essential assumptions and hypotheses [34].

CLARION takes note of the fact that the inaccessible
nature of implicit knowledge is best captured by sub-symbolic,
distributed representations (such as in a backpropagation net-
work). It is widely agreed upon [39] that distributed rep-
resentational units, for example in the hidden layers of a
backpropagation network, are capable of accomplishing pro-
cessing but are generally not individually meaningful. This
characteristic of distributed representations, which renders the
representational form less accessible, accords well with the
relative inaccessibility of implicit knowledge [40], [41].

In contrast, explicit knowledge may be best captured in
computational modeling by symbolic or localist representa-
tions [35], [37], in which each unit is more easily interpretable
and has a clearer conceptual meaning. This characteristic of
symbolic or localist representations captures the characteristic
of explicit knowledge being more accessible and manipula-
ble [35].

The dichotomous difference in the representations of the two
different types of knowledge has led to a two-level architec-
ture, whereby each level uses one kind of representation and
captures one corresponding type of process (i.e., implicit or
explicit). While this two-level structuring is the key foundation
of CLARION, additional distinctions are also made.

The theoretical considerations from the previous section
can be operationalized in CLARION using the motivational
(MS), meta-cognitive (MCS), and action-centered (ACS) sub-
systems [34]. Note that, since the air-traffic control task
is essentially novel to the human participants, we contend
that mainly motivational, control, and procedural knowledge
mechanisms are applied, and that declarative reasoning pro-
cesses are not used in any significant way. Therefore, the
current study focuses specifically on the interaction between
motivation (in the MS) and decision-making (in the ACS) as
well as the interaction between implicit and explicit processing
within the action-centered subsystem (ACS).

B. Model Implementation

In the following section, we will discuss the implementation
of the CLARION-based model. Each subsystem will be de-
scribed in turn, followed by other considerations. Due to space
limitations, the task environment itself will not be discussed.

1) Action Centered Subsystem (ACS): The action centered
subsystem contains all action-related processing. The subsys-
tem takes inputs from the environment and other subsystems
to make decisions about appropriate courses of action. These
actions can be either external (e.g., move object) or internal
(e.g., memory storage/retrieval) [34].

The present simulation utilizes an implicit decision network
(IDN) in the bottom-level of the ACS along with top-level
explicit rules. The IDN uses simplified Q-learning and contains
input, hidden, and output layers. The input layer is composed
of dimension value (DV) pairs describing current situations,
while the output layer is concerned with external actions.
There are sixty-six input DV pairs and twenty seven output
DV pairs. The input layer, for example, contains a dimension
for each holding pattern position each of which contains two
values: occupied or empty. See Table II for a complete listing
of the input dimension value pairs. The output external actions
are shown in Table III. Each output corresponds to an external
action. The default number of hidden nodes was used (46
total).

The top-level of the ACS contains explicit action rules.
These rules can be pre-loaded into an agent manually as
well as learned bottom-up through experience using rule
extraction [36]. The agents were given a limited set of action
rules which correspond to the initial instruction given to the
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TABLE II
INPUT DIMENSIONS AND THEIR ASSOCIATED VALUES (66 TOTAL).

Description

Dimension

Values

Aircraft(s) waiting in queue
Holding Pattern positions
Runway status

Aircraft Type (level 1 only)

queueTF
[hold{1-3}-{N.S.E.-W}]
[{NS, EW}_{Short, Long}]
{Ntype,Stype,Etype,Wtype }

{true, false}
{occupied, empty}
{occupied, empty}

{prop, DC10, 727, 747}

Fuel level (level 1 only) {Nfuel,Sfuel Efuel, Wfuel } {high, low}

Wind Speed windSp {0_20, 25_35, 40_50}

Wind Direction windDir {NS, EW}

Runway Conditions Runways {dry, wet, icy}
TABLE III

EXTERNAL ACTIONS IN OUTPUT LAYER OF ACS IDN (27 TOTAL).

Action

Enumerations

Bring in aircraft from queue (choose level)

Move aircraft down (levels 2, 3)
Land aircraft (from level 1 only)

{1.2. 3]
[dwn{2-3},{N,S,E,W}]
[{N,S.E;W}_{NS, EW}_{Short, Long}]

TABLE IV
PRE-LOADED RULES CORRESPONDING TO INITIAL TRAINING.

Action
Enter at {1,2,3}
Move down from z
Land from x

Condition

Aircraft waiting

Aircraft at x (levels 2,3)
Aircraft at x (level 1)

TABLE V
COMBINED REWARD STRUCTURE.

Condition Reward
Enqueue aircraft in level (3,2,1)  (0.6,0.75,0.9)
Move down from level (3,2) (0.6, 0.8)
Landing 1*
Incorrect moves 0.2*
Crash 0*

Note: Rewards with * are defined in the formal task
structure. All remaining are distance based.

participants. These rules describe available (i.e., potential)
moves. For example, it only makes sense to attempt to move
an aircraft (from a certain position) down in the hierarchy if
that position is indeed occupied by an aircraft. The rules that
were pre-loaded are detailed in Table IV.

Learning: The task has a series of built-in reinforcement
mechanisms through the use of assigned scores. These scores
are displayed directly to the participants in real time during
the completion of the task. The reward structure in the model
reflects this scoring system. In addition to these scores, it is
likely that the participants imposed additional reward structure
to the task. It was well known by the participants that the
goal was to land aircraft quickly and thus it is reasonable to
assume that having aircraft in the lowest level of the holding
pattern would be perceived to be a better system state than
having aircraft in the highest level in the pattern. Indeed the
use of the lowest level (along with runway efficiency and
reaction to weather changes) was positively correlated to high
performance [17]. As a result, we utilize a distance reduction
heuristic in addition to the explicit reward structure of the
task [42]. This heuristic rewards successful moves in inverse
proportion to the distance from the subject aircraft to the

runways (the goal state for each aircraft). The details of this
combined reward structure are shown in Table V. Notice that
the reward is always in the interval [0,1] according to the
default range of values in CLARION.

It is well known that learning (both implicit and explicit)
continues to occur off-line after interaction with the particular
task of interest (e.g., [43]). Robertson et al. [43] further show
that explicit learning requires rapid eye movement (REM)
sleep, while implicit learning occurs even without sleep time.
Though the participants in [10] performed the trials on the
same day, there was time between trials where surveys were
completed which would have facilitated further implicit learn-
ing. We capture this effect in the model by training the bottom
level network using random occurrences from the prior trial.
Five times as many random training instances are used as was
experienced during the trial. This implies that each iteration
from the trial is expected to be seen during this offline training
process five times on average. This offline learning was critical
to achieving results comparable in magnitude to the human
data. Evidence for offline learning in the earlier ATC study
(see [14]) is also observed in [18].

Parameter Values: The majority of parameters within the
ACS are left at their default values. Exceptions are: selection
temperature, which was reduced from the default of 0.1 to 0.01
(more deterministic selection); enabling the agent to select
top-level rules based on their past performance (as captured
using match statistics); disabling explicit rule refinement; and
the neural network learning rate was set to 0.5 (default: 0.1).
Finally, the level probability parameters are varied by the
motivation and meta-cognitive subsystems according to the test
condition as described next.

2) Motivational, Meta-Cognitive Subsystems (MS & MCS):
The motivation subsystem of the CLARION architecture im-
plements an agent’s internal drives and goals [44]. Within the
CLARION architecture, each drive strength, ds;, is updated
according to the current stimulus, the perceived deficit, and the
gain and bias parameters, «; and [;, according to the linear
function ds; = «;(stimulus;)(deficit;) + 5;.
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Each drive in the MS is associated with goals. Goal
strengths are determined by the drive strengths and the associ-
ated relevance weights. Using these goals, the MCS can direct
attention through input filtering, modify learning method and
reinforcement levels, change reasoning mechanisms, monitor
other subsystems, and change parameters [44]. It is this last
capability which we utilize for this model.

Drive strengths have also been used in previous CLARION
models to modify parameters. For example, in Wilson et
al. [24], [25], the strength of avoidance drives, which was
hypothesized to capture the level of anxiety, is assumed to
determine top-level selection probability (i.e., degree of cog-
nitive control or amount of explicit processing). We propose
a similar approach here.

This study focuses on a complex performance task which is
likely to stimulate an approach drive (such as “recognition and
achievement”) when self-efficacy is high. Conversely, when
self-efficacy is low, the same goal would be more likely to
stimulate an avoidance drive. We can see that the parameter «;
for avoidance drives (which determine anxiety levels) can be
inversely correlated to the theoretical concept of self-efficacy
while the “stimulus” (for both approach and avoidance drives)
represents the external goals provided to the participants (low
“stimulus” for no goal condition and high “stimulus” for goal
condition).

Because these effects are fixed for each participant for the
scenario of interest, the end result of these combined drive and
goal mechanisms (parameter changes) was enacted directly
(through the use of hard-coded values for each goal condition).
A more detailed and complete integration will be discussed in
the Further Work section.

As described in the Theoretical Background section, goal-
setting theory proposes that the end result of the different self-
efficacy and personal (i.e., committed, internal) goal conditions
is to affect the amount of attention (i.e., explicit processing)
allocated to the task. Correspondingly, the parameter changes
within our model are the top- and bottom-level probabilities.
These parameters affect the probability of a given perception-
action cycle choosing an action from each level. A broad range
for these parameters was simulated to explore the performance
effects which we will address in a more detailed technical
report.

C. Timing Considerations

Each of the human trials in [10] was 10 minutes in duration.
At the beginning of the trials, the average participant could
only land 10 aircraft per trial. By the end of the sixth trial,
an average of 35 aircraft could be landed by the high-ability
participants. Each landing requires, at most, 4 correct actions
from incoming queue to runway (accept into level 3, move
down to 2, move down to 1, land). Participants made an
average of 10 errors. This suggests at least 150 external
actions per 10-minute trial for average performance. Another
consideration is the time scale of the task itself. The incoming
aircraft arrive at a rate of one every seven seconds on average.
An aircraft remains on a runway for fifteen seconds after

beginning to land. In order for the cognitive model to perceive
the average aircraft arrival, seven second increments would be
required. This suggests at least 90 perceptions per 10-minute
trial. Thus, the actions required to land aircraft is the limiting
factor. The simulations in this study use 175 perception-action
cycles of the CLARION-based model to simulate each 10-
minute trial.

VI. SIMULATION RESULTS

First we briefly review the human data found in [10]. The
left panel of Fig. 2 shows the mean number of landed aircraft
per trial found in experiment three under the procedural pre-
training condition. We observe that the mean performance
changes from 8-18 aircraft landed in the first trial up to 28-35
in the final trial. The goal condition decreases performance of
both high- and low-ability participants across trials.

We test the hypotheses regarding the effect of level proba-
bilities on learning and performance described above through
a series of simulations. These parameters are chosen to sum to
one. For the difficult goal case, the top-level probability was
0.20 (bottom-level was 0.80). The no goal case was modeled
with a top-level probability of 0.05 (bottom-level of 0.95). At
first these may appear to be unusually skewed toward implicit
processing. However, other researchers who have experienced
the task first-hand note that at the beginning “it feels as though
the system is driving you” [18]. This reaction suggests a very
large amount of implicit processing.

For each condition, twenty agents were initialized with
individual ability differences (modeled as random Boltzman
distribution selection temperatures — randomly chosen uni-
formly between 0.01 and 0.03) and subjected to ten trials.
As done in [10], the random agents were separated into two
groups according to the median ability (selection temperature)

We regard the first four trials as a training set and the
remaining six as true test trials. The right panel of Fig. 2
shows the mean number of aircraft successfully landed by
the agents for each trial. The results show similar qualitative
behavior between the model and the human data. In particular,
the effect of a difficult performance goal (increasing explicit
processing) leading to decreased performance in both high-
and low-ability groups is observed. We are unable to provide
detailed comparisons as the original data are unavailable.

One will further observe that the human subjects appear to
learn more rapidly in the early trials than the computational
agents. As one would expect, experimentation shows that the
shape of these curves is affected by the number of implicit
learning iterations performed between trials.

We finally note that the cognitive models crashed a compa-
rable number of aircraft per trial (mean=7.9, std.dev=2.0) as
the human participants.

VII. GENERAL DISCUSSION

We have argued that the performance effects of Lock and
Latham’s Goal-setting theory can be explained by a level
(i.e., implicit vs. explicit) probability cognitive mechanism.
Further, this study has shown how this mechanism can be
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Fig. 2. Mean landing results from human trails from [10] (left) and of CLARION agents for each condition (right). The solid curves show the mean number
of aircraft successfully landed in each trial for the no goal condition for high- (circle) and low-ability (square) groups. Similarly, the dashed curves show the

data for the goal condition.

enacted through the use of drives. The CLARION cognitive
architecture provides a framework for showing plausibility
of these motivational mechanisms in explaining observed
learning and performance behaviors.

The results provided suggest that additional explicit atten-
tion on a task before a significant number of rules that can
enhance the task performance have been generated hinder
learning and thus future performance. Further work is needed
to understand this tradeoff between state of knowledge (i.e.,
number of rules) and the benefit of explicit processing for high
performance.

A. Limitations

There are a couple of limitations of the current model
which should be discussed. Though we have captured initial
bottom-up learning, the full development of strategies as they
are discussed in the literature (e.g., [18]) are not included.
As strategies are learned, interaction with the non-action
centered subsystem (NACS) would become necessary and
these interactions would be included as outputs of the action
centered subsystem (ACS). Several inputs have been omitted
for simplicity (and are largely justified in [16]). These include
fuel and aircraft type at levels two and three in the holding
pattern. Further, the detailed point deductions for low fuel as
well as the textual feedback mechanism present in the task for
incorrect responses is not used here. The implementation has
been simplified to avoid certain types of error that a participant
may have been able to make (e.g., landing an aircraft from
level 2, moving more than one level at a time) or to simplify
an operation (e.g., specifying which position to move down
to).

Despite these limitations, the model presented herein shows
the plausibility of the level probability cognitive mechanism
in producing the observed effects. Further work to include
the items mentioned above as well as correspondingly more
detailed analysis would improve the insight to be gained from
this model.

B. Further Work

The model and results presented here show promising re-
sults that suggest that the differences in performance due to the
presence of a goal can be explained by a cognitive mechanism
which modulates the explicit processing devoted to the task.
Further analysis could be done which examines the strategies
exhibited by the agents to compare to the human strategies
reported in [18] as well as an exploration of the extracted
rules. Addressing the limitations discussed earlier would build
on this foundation to more fully understand strategy formation
and motivational impacts on performance.

Individual differences and the moderating effects of ability
have been modeled in the present work using differences
in the Boltzman distribution temperature setting. Additional
individual differences should be explored with include varied
learning rates, stress responses, probability of rule encoding,
and so on.

A further integration of the model with the complete goal-
setting theory would allow extensions to model the benefits
of a difficult learning goal. We propose that this integration
include a representation of the agent’s self-efficacy and goal
production. Self-efficacy can be modeled as an internal state
of the meta-cognitive subsystem which can be derived from
monitoring the state of the top-level of the ACS (e.g., number
of existing rules) in addition to the assigned goal. A conceptual
representation of this calculation is shown in Fig. 3.

Self-Efficacy

Learning goal

Performance goal

\

# Rules Learned

Fig. 3. Conceptual representation of self-efficacy calculation in the MCS.
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Individual differences also occur in the perceived deficit
levels for drives. Kanfer and Ackerman [10] suggest that
high ability individuals are more likely to set difficult goals
for themselves without an externally imposed goal, thus they
have larger perceived deficits. It is important to note that this
deficit is in relation to expected performance regardless of the
stimulus (assigned goal).
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