
 1

Setting Up & Using the Goal Structure

© 2012. Nicholas Wilson

Table of Contents

Setting Up the Goal Structure ... 1
Manually Setting a Goal .. 2
Using Action Chunks .. 3

Setting Up the Goal Structure

In this section we will discuss how to set up and use the Goal Structure. Broadly
speaking, the goal structure can be thought of as being a “container” within an agent
that holds the agent’s goals (in the form of GoalChunk world objects). Technically
speaking, it is located within the top level of the MS. However, all interaction with
the goal structure (from the simulating environment) is performed directly via the
Agent class. For instance, we can view the contents of the goal structure by calling
the GetInternals method. The code below demonstrates how we might
accomplish this for our agent, John:

//Gets all of the items in the goal structure
IEnumerable<GoalChunk> gsContents =
 (IEnumerable<GoalChunk>)John.GetInternals
 (Agent.InternalWorldObjectContainers.GOAL_STRUCTURE);

//Gets the current goal
GoalChunk currentGoal = John.CurrentGoal;

Like actions, goals are represented as chunks (i.e., using the GoalChunk class) and
are initialized through the World singleton object:

GoalChunk g = World.NewGoalChunk();

There are also two parameters that you can set in order to “tune” the behavior of the
goal structure. They are located in the parameters class of the
MotivationalSubsystem and can be used to specify:

1. The behavior of the goal structure (i.e., does it behave like a list or a stack)

2. How to set the activation for the current goal (i.e., use the actual activation
specified when the goal was set, or use the full activation for the goal)

Below is an example of how to set these parameters (locally) for our agent, John:

John.MS.Parameters.CURRENT_GOAL_ACTIVATION_OPTION =

 2

 MotivationalSubsystem.CurrentGoalActivationOptions.FULL;

John.MS.Parameters.GOAL_STRUCTURE_BEHAVIOR_OPTION =
 MotivationalSubsystem.GoalStructureBehaviorOptions.STACK;

The following lines of code demonstrate how a goal is initialized and used as part of
the input for a component (in this example, a SimplifiedQBPNetwork used in the
bottom level of the ACS):

... //Elided code initializing other world objects

GoalChunk g = World.NewGoalChunk();
Agent John = World.NewAgent("John");

SimplifiedQBPNetwork net =
 AgentInitializer.InitializeImplicitDecisionNetwork(John,
 SimplifiedQBPNetwork.Factory);

net.Input.Add(g);

... //Elided code performing additional initialization for the network

Note that all of the goals in the world are always specified as part of the “internal
sensory information” and will automatically be “activated” in the
SensoryInformation the next time one is perceived.

Now that we have shown you how to setup an agent to use goals, you need to know
how to “activate” them. There are two methods for accomplishing this. The first is to
set goals in the goal structure manually. The second is to set goals by using the “goal
structure update action chunk.” We begin by looking at how chunks are set
manually.

Manually Setting a Goal

The simplest way to “activate” (or add) a goal in the goal structure is to manually
“set” it. We do this by calling the SetGoal method for the agent where the goal is to
be set. The code below demonstrates how we can do this for our agent, John:

John.SetGoal(g, 1);

We specify two items when calling this method: the goal that is to be set and its
“activation level”. This will “set” (or add) the goal in the goal structure. To
“deactivate” (or remove) the goal from the goal structure we will call the
ResetGoal method. In the CLARION theory, the term “reset” is equivalent to
“remove” as it relates to the goal structure (as well as Working Memory). The
following code demonstrates how we can manually reset (i.e., deactivate or remove)
the goal in the goal structure:

John.ResetGoal(g);

 3

These two simple methods provide you with all of the power you need to be able to
use goals within the CLARION Library. However, manually setting the goals is only
one of two ways to work with goals, and will often not be enough for more advanced
simulations. The CLARION theory provides many more details regarding various
additional methods for setting goals. For example, we can use “goal actions” in the
ACS or in the MCS to perform operations on the goal structure. In the following
section, we will look at how goals can be set using “goal actions” in the ACS.

Using Action Chunks

To begin, while the CLARION theory refers to actions that affect the goal structure as
being “goal actions”, the implementation uses a clearer term for describing these
sorts of actions. In other words, in the CLARION Library, actions that perform
updates on the goal structure are defined using the
GoalStructureUpdateActionChunk class. The contents of these action chunks
contain information about the sorts of updates that are to be performed. For
example, suppose we want an action that “sets” the goal g in the goal structure. The
following code sets up such an action:

GoalStructureUpdateActionChunk gAct = World.NewGoalStructureUpdateActionChunk();

gAct.Add(GoalStructure.RecognizedActions.SET, g);

Note that we specify, as the first parameter in our Add method, an enumerator
called RecognizedActions. Several classes within the CLARION Library (namely
those mechanism that can be manipulated using actions, e.g., the
NonActionCeneteredSubsystem, the GoalStructure, WorkingMemory, etc.)
define a RecognizedActions enumerator. This enumerator provides the list of
commands that an action can perform on an instance of that class. The
GoalStructure recognizes four types of actions:

 SET. “Adds” the goal to the goal structure

 RESET. “Removes” the goal from the goal structure

 RESET_ALL. “Removes” ALL of the goals from the goal structure

 SET_RESET. Combines the RESET_ALL and SET actions

If we want a component in the ACS to use this action, all we have to do is specify it in
the output layer of the component. Below is an example of how we would set up this
action in a network on the bottom level of the ACS.

... //Elided code performing additional initialization for the network

net.Output.Add(gAct);

Now, whenever the ACS selects this GoalStructureUpdateActionChunk, the
system will perform the commands specified by that action. We will discuss another
variation of this method (i.e., using a meta-cognitive module) in a later tutorial.

 4

At this point you should have a basic foundation for building simulations in the
CLARION Library using the goal structure. When you are ready to move on to the
more complicated aspects of the MS (including integrating the MS with the MCS), the
next tutorial, “Intermediate MS & MCS Setup”, can be found in the “Intermediate
Tutorials” section of the “Tutorials” folder.

Remember, as always, if you run into any problems, have additional questions, or
want to report a bug, you can contact us at clarion.support@gmail.com.

mailto:clarion.support@gmail.com

