
 1

Useful Features

© 2011. Nicholas Wilson

Table of Contents

Viewing an Agent’s “Internals”... 1

Logging (using Trace) ... 2

The Implicit Component Initializer .. 3
Pre-Training ... 4
Auto-Encoding ... 7
Distributed Dimension-Value Pairs ... 9
Populating the Input and Output Layers of an Implicit Component 10

Timing .. 10
Response Time ... 10
“Real-time” Mode ... 10

Asynchronous Operation .. 11

Viewing an Agent’s “Internals”

Reporting the outcome of a task usually involves at least some amount of
investigation into what, exactly, the agent learned. We can retrieve any of the
internal (functional) objects that are contained within an agent using the
GetInternals method located in the Agent class. For example, suppose your task
used bottom-up learning. In this case, we will likely want to know what rules were
learned. The code below demonstrates how we could access the rules in the action
rule store for our agent, John:

foreach (var i in John.GetInternals(Agent.Internals.ACTION_RULES))
 Console.WriteLine(i);

The GetInternals method takes, as its input, the InternalContainers
enumerator. This enumerator lists all of the functional internal objects that are
available for retrieval from within an Agent. This includes:

 Drives
 Action rules
 Implicit decision networks
 Associative rules
 Associative memory networks
 Associative episodic memory networks

 2

 Meta cognitive modules1

The previous example (above) iterated through the rules that were returned by the
GetInternals method and wrote them out to the console. Below is an example of a
possible output from that code2:

Condition:

 (Dimension = GoalChunk, Value = Salute), Setting = True

 (Dimension = GoalChunk, Value = Bid Farewell), Setting = True

 (Dimension = Salutation, Value = Hello), Setting = True

 (Dimension = Salutation, Value = Goodbye), Setting = False

Action:

 ExternalActionChunk Hello:

 DimensionValuePairs:

 (Dimension = SemanticLabel, Value = Hello)

The GetInternals method is not only useful for outputting the agent’s internal
(functional) objects. It also provides an easy way to retrieve these objects from an
agent for the sake of performing other tasks (such as pre-training or “offline”
training, parameter tuning, etc.).

While you will likely find this feature to be very useful, you will probably also find
that you want to know more about the inter-workings of the internal processes
being performed by your agent (for the sake of tracing or debugging your
simulation). The next section (below) covers the logging features of the CLARION
Library.

Logging (using Trace)

Often times, when in the process of building and tuning a simulation, you may find it
useful to view the internal processes of your agent(s). For example, by adjusting the
generalization and specialization thresholds, you can increase/decrease the rate at
which your agent performs either type of refinement. However, you obviously need
some way to determine these metrics in order to appropriately tune the parameters.

To address those situations where you may want to trace the internal processes of
the system, the CLARION Library provides several different levels of logging by
leveraging C#’s tracing mechanisms. By default, the logging level is set to “Off” (i.e.,
logging is not performed), however, you can specify a logging level by setting the

1 Meta-cognitive modules have the MetaCognitiveDecisionNetworks and
MetaCogntiiveActionRules properties that you can use to view the internal components for those
modules
2 The rule output was taken from a run of the “HelloWorld-Full.cs” simulation, which is located in the
“Beginner” folder under the “Samples” folder in the CLARION Library package

http://msdn.microsoft.com/en-us/library/system.diagnostics.trace.aspx

 3

LoggingLevel property located in the World singleton. The following code
demonstrates how this might be done:

World.LoggingLevel = TraceLevel.Warning;

//Elided additional initialization of the simulating environment and agent(s)

The CLARION Library uses the default tracing levels that are defined by the
TraceLevel enumerator3. Below is a breakdown of the kinds of things that are
logged by the system at the various trace levels:

 Off – No logging is performed

 Error – Only a few, “abnormal”, system behaviors are logged

 Warning – The system will “warn” you when certain, basic, events occur (e.g.,
the agent chooses an action, the goal structure or working memory are
updated, rules are added or deleted from the top level of the ACS, etc.)

 Info – Similar to the Warning level, except it provides more detailed
information. For example, it will inform you of when:

 Certain mechanisms (such as the drive strengths, goal structure, or
working memory updating threads) begin/end their processes

 The ACS (or MCS) determines that a rule should be
extracted/generalized/specialized/deleted

 Components are eligible and/or used during decision-making (in the
ACS or MCS)

 A certain rule/action type is targeted during decision-making

 Etc.

 Verbose – The most detailed logging level. The system will provide very
detailed information about all of the internal mechanisms within the system
(e.g., the state of all processes, i.e., threads; all events; anything specified by
the lower logging levels, etc.)

The Implicit Component Initializer

One of the most difficult parts of initializing a CLARION-based agent is the process of
setting up and pre-training implicit components such as neural networks. To
address this issue, the ImplicitComponentInitializer has been provided to
assist you with this process. The initializer can be used with any functional object
that extends from the ImplicitComponent class.

In the sections that follow, we will go over the various features that are at your
disposal when using the ImplicitComponentInitializer.

3 Located in the System.Diagnostics namespace

http://msdn.microsoft.com/en-us/library/system.diagnostics.tracelevel.aspx

 4

Pre-Training

When in the course of developing a task, you may occasionally find that you need to
“pre-ordain” your agent (or part of your agent) with a capability that is either not
appropriate for, or simply can not be learned using standard “online” learning
techniques (such as reinforcement learning). While this sort of “online” learning
may not be a necessary aspect of your task, you may still want the bottom level of
one or more subsystems to be “imbued” with some sort of proceduralized or
“automated” functionality (e.g., capabilities or knowledge that are the consequence
of an evolutionary process or the result of past experiences). For these types of
instances, the CLARION Library provides a very useful feature known as the
ImplicitComponentInitializer.

Before we begin, in order to pre-train an ImplicitComponent, we will first need
two things:

1. A target that is to be trained4

2. A trainer to provide the correct (or “desired”) output to the target

The trainer can really be any type of ImplicitComponent (e.g., an equation, a table
lookup, another previously trained ImplicitComponent, etc.). However, the one
thing you MUST be sure of is that it can provide the correct output(s) for all of the
training data sets that are being using to train the target.

Note that, by default, the CLARION Library provides several built-in “extension”
components5 that can very be easily be designated as trainers (i.e., without needing
any training themselves). The simplest of these extensions is the
GenericEquation6. In the demonstration that follows, this component will be used
in the role of trainer for a BPNetwork, that will act as the target. By using the Train
method of the ImplicitComponentInitializer, the target component will learn
how to report the value of a simple linear equation (i.e.,), as specified by the
GenericEquation.

To begin, we need to setup and initialize both our target and trainer. Let’s assume
that we want to use this target in the bottom level of the ACS. The steps needed in
order to accomplish this have already been discussed elsewhere7, so we will not go
into those details here. Instead, let’s move on to our trainer.

Initializing a trainer works slightly differently than the standard method for
initializing an agent’s internal functional objects. Specifically, trainer components
are not required to exists within an agent. You can, of course, use a component that
is within an agent if you so choose. However, as is more typically the case, you will
likely just want to initialize your trainer externally for the sole purpose of training
your target. To accomplish this, we use the InitializeTrainer method of the

4 The target component MUST implement the ITrainable interface
5 See the Clarion.Framework.Extensions namespace
6 See the Basic Customization tutorial (located in the Customizations section of the Tutorials folder)
for details about this component
7 See the Setting Up and Using the ACS tutorial (located in the Basics Tutorials section)

 5

ImplicitComponentInitializer. This method is essentially the same as the
Initialize methods in the AgentInitializer, except that it does not “tie” the
initialized component to an agent. The following code demonstrates how the
InitializeTrainer method might be used to initialize a GenericEquation:

GenericEquation eq = ImplicitComponentInitializer.InitializeTrainer
 (GenericEquation.Factory, (Equation)LinearEquation);

A few things should be noted at this point. First, to initialize a GenericEquation,
we must specify a delegate method (e.g., LinearEquation), which conforms to
the Equation signature. This method is used by the component in order to calculate
the activations for the “nodes” on the output layer.8 Second, an
ImplicitComponent, initialized using this method, can ONLY be used as a trainer.
In other words, it is not possible to later use this component as an internal
functional object within an agent. Third, like any component that is initialized using
the AgentInitializer, components initialized using the
ImplicitComponentInitializer MUST be “committed” before they can be used.
However, unlike how an agent’s internals are committed, to commit a trainer, we
will need to call that component’s own Commit() method.

The following code demonstrates how we might initialize both a BPNetwork
(target), in the bottom level of the ACS of our agent, John, as well as initialize a
GenericEquation (trainer):

DimensionValuePair x = World.NewDimensionValuePair("Variables", "X");
DimensionValuePair y = World.NewDimensionValuePair("Variables", "Y");
Agent John = World.NewAgent("John");

//Elided Agent Initialization

BPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, BPNetwork.Factory);

GenericEquation eq = ImplicitComponentInitializer.InitializeTrainer
 (GenericEquation.Factory, (Equation)LinearEquation);

net.Input.Add(x);
eq.Input.Add(x);

net.Output.Add(y);
eq.Output.Add(y);

John.Commit(net);
eq.Commit();

After we have initialized our trainer and target, the next thing that we need to do is
setup training data sets. Each training data set should specify a different
configuration for the activations of input layer of our trainer and target components.
There are two options, however, for specifying training data sets. The most

8 See the Basic Customization tutorial for more details

 6

straightforward method is to simply create a bunch of data sets using fixed input
activation patterns. This is the preferred method when you are working with a very
specific, known, set of training data. The other method that is available to you is to
define a range for each input node (or a subset thereof), between which training
should occur (and at a specified increment).

To define a range, for a given node on the input layer, we will use the AddRange
method in the ImplicitComponentInitializer. As part of calling this method,
we will need to specify the following:

 The IWorldObject associated with the input node

 The upper and lower bounds for the range

 The increment at which the range should be traversed (optional)9

Below is an example of how we would define a range (between 0 and 1, with an
increment of 0.1) for our variable “X”:

ImplicitComponentInitializer.AddRange(x, 0, 1, .1);

Note that if a range has been specified for a particular input node, it will be used for
that node, irrespective of if a data set specifies a fixed value for that node. Keep this
in mind in case you are using the ImplicitComponentInitializer to train
multiple networks as you may want to remove one or more ranges (by calling the
RemoveRange method) between training operations.

You MUST create at least one training data set, even if you have defined ranges for
all of your input nodes. The NewDataSet method in the
ImplicitComponentInitializer can be used to generate new data sets. Each
data set is represented as an ActivationCollection. You will notice very quickly,
while creating and using data sets, that they work essentially the same as
SensoryInformation. This is because ActivationCollection is actually the
base class for SensoryInformation. The following example demonstrates how to
setup a single data set for our variable “X”:

List<ActivationCollection> dataSets = new List<ActivationCollection>();

dataSets.Add(ImplicitComponentInitializer.NewDataSet());
dataSets[0].Add(x);

Recall that we specified a range for our variable “X”, so we do not need to worry
about specifying an activation. However, if we hadn’t specified a range for “X”, then
specifying an activation for “X” would be exactly the same process as is normally
done for SensoryInformation objects.

At this point, we are now ready to begin training. The Train method takes the
following as inputs:

 The target

9 The default increment is 0.01

 7

 The trainer
 The data sets (as a collection of ActivationCollection objects)
 A termination condition (optional, FIXED or SUM_SQ_ERROR)

 The number of times over which the data sets should be iterated (optional, if
the FIXED termination condition is used)

 The threshold under which the sum of squared error must fall (optional, if
the SUM_SQ_ERROR termination condition is used)

 The selection temperature (optional, if the target is
IReinforcementTrainable)

 Whether the data sets should be traversed in random order (optional)
 Whether the call to the method is intended only to test the performance of

the target given the data set (optional)

In order to initiate training on our target BPNetwork, using the GenericEquation
trainer (with SUM_SQ_ERROR termination condition and the default threshold), we
need to do the following:

ImplicitComponentInitializer.Train(net, eq, dataSets,
 ImplicitComponentInitializer.TrainingTerminationConditions.SUM_SQ_ERROR);

When the above code returns, the BPNetwork will be fully trained to report the
outputs (as specified by the GenericEquation) for the training data set (i.e., the
range of values that we defined for “X”).

As a final note, you can follow the status of the training operation simply by enabling
the CLARION Library’s built-in logging feature (see the section above). In addition,
the ImplicitComponentInitializer can also be serialized, thus allowing you to
save and reload your range specifications.

Auto-Encoding

One key feature of CLARION is the use of implicit “auto-encoder” components (e.g.,
Hopfield networks10) in the bottom level of the NACS to help facilitate associative
reasoning. These networks can be used to enable some of CLARION’s more unique
reasoning capabilities (especially with regard to the synergy of rule-based and
associative reasoning processes).

With the above being said, encoding knowledge into these sorts of components can
sometimes be a bit tricky. Therefore, in order to assist you with this process, the
ImplicitComponentInitializer also provides an Encode method, which is
specifically designed to “train” implicit components that implement the
IAutoEncoder interface.

Currently, the HopfieldNetwork class is the primary “auto-encoder” that comes
pre-packaged in the CLARION Library. Therefore, it will be used for our
demonstrations on how to Encode using the ImplicitComponentInitializer.

10 See the CLARION-H addendum to the technical specification document (located here)

http://www.cogsci.rpi.edu/~rsun/folder-files/SH-CLARION-H.pdf

 8

The steps for initializing a target ImplicitComponent for encoding is actually very
similar to what was described in the previous section for training. In fact, in many
ways, the two processes are essentially the same. However, the main place in which
they differ is that encoding does not require a “trainer.” Instead, we simply need to
specify the data sets that are being encoded into the auto-encoder, and the
ImplicitComponentInitializer will handle the rest.

Similar to the Train method, the Encode method takes the following inputs:

 The target auto-encoder
 The data sets
 A termination condition (optional, FIXED or UNTIL_ENCODED)
 The number of times over which the data sets should be iterated (optional, if

the FIXED termination condition is used)
 Whether the data sets should be traversed in random order (optional)
 Whether the call to the method is intended only to test the retrieval accuracy

of the target given the data set (optional)

When the Encode method returns, the target will be fully encoded and will be able
to rebuild any of the patterns in the data sets. In the code example below, we
demonstrate how you could setup a HopfieldNetwork (in the bottom level of the
NACS) with 10 nodes and use the ImplicitComponentInitializer to encode 3
activation patterns for those nodes (using the default encoding options):

//Initialize the 10 nodes
DimensionValuePair n1 = World.NewDimensionValuePair("Node", 1);
DimensionValuePair n2 = World.NewDimensionValuePair("Node", 2);
DimensionValuePair n3 = World.NewDimensionValuePair("Node", 3);
DimensionValuePair n4 = World.NewDimensionValuePair("Node", 4);
DimensionValuePair n5 = World.NewDimensionValuePair("Node", 5);
DimensionValuePair n6 = World.NewDimensionValuePair("Node", 6);
DimensionValuePair n7 = World.NewDimensionValuePair("Node", 7);
DimensionValuePair n8 = World.NewDimensionValuePair("Node", 8);
DimensionValuePair n9 = World.NewDimensionValuePair("Node", 9);
DimensionValuePair n10 = World.NewDimensionValuePair("Node", 10);

Agent John = World.NewAgent("John");

//Elided other agent initializations

HopfieldNetwork net = AgentInitializer.InitializeAssociativeMemoryNetwork
 (John, HopfieldNetwork.Factory);

//Add the 10 nodes to the Hopfield network
net.Nodes.Add(n1);
net.Nodes.Add(n2);
net.Nodes.Add(n3);
net.Nodes.Add(n4);
net.Nodes.Add(n5);
net.Nodes.Add(n6);
net.Nodes.Add(n7);
net.Nodes.Add(n8);
net.Nodes.Add(n9);

 9

net.Nodes.Add(n10);

//Don't forget to commit the network!
John.Commit(net);

ActivationCollection[] patterns = new ActivationCollection[3];

//Pattern 1
patterns[0] = ImplicitComponentInitializer.NewDataSet();
patterns[0].Add(n1, 1);
patterns[0].Add(n2, 0);
patterns[0].Add(n3, 1);
patterns[0].Add(n4, 0);
patterns[0].Add(n5, 1);
patterns[0].Add(n6, 0);
patterns[0].Add(n7, 1);
patterns[0].Add(n8, 0);
patterns[0].Add(n9, 1);
patterns[0].Add(n10, 0);

//Pattern 2
patterns[1] = ImplicitComponentInitializer.NewDataSet();
patterns[1].Add(n1, 1);
patterns[1].Add(n2, 1);
patterns[1].Add(n3, 0);
patterns[1].Add(n4, 0);
patterns[1].Add(n5, 1);
patterns[1].Add(n6, 1);
patterns[1].Add(n7, 0);
patterns[1].Add(n8, 0);
patterns[1].Add(n9, 1);
patterns[1].Add(n10, 1);

//Pattern 3
patterns[2] = ImplicitComponentInitializer.NewDataSet();
patterns[2].Add(n1, 0);
patterns[2].Add(n2, 0);
patterns[2].Add(n3, 0);
patterns[2].Add(n4, 1);
patterns[2].Add(n5, 1);
patterns[2].Add(n6, 1);
patterns[2].Add(n7, 0);
patterns[2].Add(n8, 0);
patterns[2].Add(n9, 0);
patterns[2].Add(n10, 1);

ImplicitComponentInitializer.Encode(net, patterns);

Distributed Dimension-Value Pairs
This feature is currently under development and, therefore, is not available in the
current release of the CLARION Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

 10

Populating the Input and Output Layers of an Implicit Component

This feature is currently under development and, therefore, is not available in the
current release of the CLARION Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Timing

Response Time

This feature has been developed, however the documentation, guides, and tutorials
for it are currently incomplete. If you would like to use this feature and have any
questions on how to make use of it, feel free to contact us at
clarion.support@gmail.com. In future releases, this section will contain additional
information describing how to use this feature.

“Real-time” Mode

This feature has been developed, however the documentation, guides, and tutorials
for it are currently incomplete. If you would like to use this feature and have any
questions on how to make use of it, feel free to contact us at
clarion.support@gmail.com. In future releases, this section will contain additional
information describing how to use this feature.

This being said, below is an example of how to specify that our agent, John, should
run in real-time mode:

mailto:clarion.support@gmail.com
mailto:clarion.support@gmail.com

 11

John.Parameters.IN_REAL_TIME = true;

Asynchronous Operation

As we have mentioned a couple of times throughout these tutorials, the CLARION
Library is an asynchronous (i.e., multi-threaded) system that leverages an advanced
publisher/subscriber event model in order to facilitate the interactions between all
of the internal mechanisms within an agent. Because of this fact, the CLARION
Library can also be setup to interact asynchronously with a simulating environment.

Setting up the simulating environment to interact asynchronously with agents is
actually a fairly simple process. All we need to do is extend the abstract
AsynchronousSimulatingEnvironment11 class:

public class SomeSimulatingEnvironment : AsynchronousSimulatingEnvironment
{
... //Elided simulation code
}

After we have extended this class, there are only two other things that need to be
done:

1. Override the abstract ProcessChosenExternalAction method (which is
defined by the AsynchronousSimulatingEnvironment class)

2. Register the asynchronous simulating environment with the agent (by calling
the agent’s RegisterAsynchronousSimulatingEnvironment method)

The follow code sample demonstrates how we might accomplish the above for our
agent, John:

// Register the simulating environment in the initialization section
John.RegisterAsynchronousSimulatingEnvironment(this);

...

protected override void ProcessChosenExternalAction
 (Agent actor, ExternalActionChunk chosenAction, SensoryInformation relatedSI,
 long performedAt, long responseTime)

{
 ... //Elided code to process the agent’s chosen action and deliver feedback
}

Remember, as always, if you run into any problems, have additional questions, or
want to report a bug, you can contact us at clarion.support@gmail.com.

11 Located in the Clarion.Plugins namespace

mailto:clarion.support@gmail.com

