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Representation 

Basic ideas of the NACS: 

 The co-existence of and difference between explicit and implicit 
knowledge; 

 The simultaneous involvement of implicit and explicit processes in most 
tasks; 

 The redundant representation of explicit and implicit knowledge; 

 The integration of the results of explicit and implicit processing; 

 The iterative (and possibly bidirectional) processing. 

 

(similar to the ACS, except the last one) 



Representation 

 Storing general knowledge about the world –‘semantic’ memory  

 Storing specific experiences in the world -- episodic memory 

 Performing various kinds of memory retrievals and inferences from 
such knowledge 

 Under the control of the Action-Centered Subsystem usually (through 
its actions)  

 Formed through acquiring and assimilating general knowledge, from 
external sources or from experiences (e.g., during action decision 
making, or reasoning) 

 Therefore, the NACS includes long-term (and short-term) semantic 
memory and long-term (and short-term) episodic memory; the ACS 
includes long-term (and short-term) procedural memory. 



Representation 

Explicit semantic memory 

Explicit episodic Memory 

Associative Memory Networks 
(AMN) – Auto-associative 

Associative Memory Networks 
(AMN) – Hetero-associative 

Abstract Episodic Memory 
(AEM) 



Representation 

The top level:  

 Encodes explicit, non-action-centered knowledge 

 Chunk nodes encode concepts, linked to 
(micro)features at the bottom level – co-occurrences 
of (micro)features  

     a prototype model of concepts 

 Links across chunk nodes encode explicit associations 
between chunks (concepts) –- unidirectional or bidirectional  

     associative rules  
 



Representation 

 Each chunk (concept) is represented by a chunk node in the top level 

 Each chunk (concept) is represented by its (micro)feature nodes in 
the bottom level (distributed representation; more later) 

 Chunk-idi  (dimi1
, vali1) (dimi2

, vali2) … (dimin
, valin)  

 e.g., table-1  (type, table) (size, large) (color, white) (number-of-legs, 4) 

 Chunk-id may be externally given (if presented from external source) 
or generated (randomly) internally. 

 

 

(essentially the same as the ACS) 



Representation 

 Explicit associative rules: Chunk nodes (denoting concepts) are 
connected at the top level by explicit associative rules 

 The condition of an associative rule contains one or more chunk 
nodes (different from the ACS). 

 The conclusion of an associative rule contains one chunk node. 

 

 Modularity: 

 Similar to the ACS, the bottom level of the NACS can have 
multiple networks, each for a different kind of process. 

 (Correspondingly, the top level of the NACS can be divided into 
multiple rule groups.) 

 

Q 



Representation 

 Chunks may be activated:  

 As a result of receiving inputs (e.g., from the ACS). 

 By applying an associative rule (within the top level of the NACS). 

 From the result of an associative mapping at the bottom level of the NACS. 

 By similarity-based reasoning (through the bottom-level distributed 
representation and the top-bottom interaction in the NACS). 

 

 The strength of a chunk in the top level (the chunk node) is 
determined by: 

 

 

where sk
c is the activation of chunk k in the top level and x is a particular 

activation source. 

sk

c = max
x

sk

c,x( )



Representation 

 Chunk nodes and associative rules in the top level:  base-level 
activations (as in the ACS). 

 Chunk nodes: 

 

 

where ibj
c is the initial BLA, cc is the amplitude, dc is the decay rate, and tl is the 

time since the lth use of the chunk. 

 Associative rules: 

 
 

where the same symbols are used except for r in place of c. 
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c  cc tl
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n


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l=1

n

å



Representation 
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Representation 

The Bottom Level: 

 Associative Memory Networks:  encode non-action-centered implicit 
knowledge  

     (e.g., BP networks  (MLP trained with BP); or Hopfield networks; etc.). 

 Each chunk (represented by a top-level chunk node): represented by 
a set of (micro)feature nodes at the bottom level (1 feature  1 node). 

 

 Bottom-up activation through associative mapping 

 Bottom-up activation through similarity-based processes 



Representation 

 Various possibilities of capturing implicit associations in the bottom 
level: 

 Hetero-associative:  

 one set of nodes are presented as the input and another as the output to 
create an association between the two.  

 E.g., MLPs trained with BP. 

 Auto-associative:  

 observed nodes are set as both the input and desired output; for soft 
constraint satisfaction, pattern completion, etc.  

 E.g., Hopfield networks.   Some details …… 

 These different ways of using the bottom level are implemented as 
separate modules (use as needed). 



Representation 

The process of top-down activation (Sun, 2003; Helie and Sun, 
2010): 

 When a chunk node is inferred (activated) in the top level but not in the 
bottom level, a top-down activation process may activate corresponding 
(micro)feature nodes in the bottom level. 

 The activation of a (micro)feature node (in the bottom level) is set to the 
strength level of its corresponding chunk node. 

 If the (micro)feature node  receives activation from several chunk nodes, 
the maximum is used. 



Representation 

The process of bottom-up activation (Sun, 2003; Helie and Sun, 2010): 

 When the result from the bottom level is sent bottom-up, it 
activates all chunk nodes compatible with it (i.e., with 
overlapping features). Weights later. 

 A Max function is used to determine the overall strength of 
activated chunk nodes from bottom-up activation and from 
within the top level: 

 

where si
c is the activation of chunk i, si 

c, TL  is the top-level activation of chunk i, and 
si 

c, BL is the bottom-up activation of chunk i. 

si

c = max si

c,TL ,  si

c,BL( )



Representation 

 

 

Questions? 
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Reasoning 

 Starts with an input to the NACS (by an ACS action)  

 (input to the bottom level, the top level, or both) 

 Activation levels of inputs are 1 (full activation). 

 Bottom-up and top-down activation can then occur  

 which ensures that full activation of all appropriate nodes 
occurs regardless of type of input provided. 



Reasoning 

Each round of NACS reasoning: 

 At the bottom level, starts with the activated (micro)feature 
nodes (on the input side of the bottom level, if hetero-
associative) for associative mapping. One round of 
associative mapping activates a set of (micro)feature nodes 
(on the output side if hetero-associative). 

 At the top level, concurrently, an iteration of inference 
occurs starting from all the currently activated chunk nodes. 
All applicable associative rules fire simultaneously (there is 
no competition/selection among associative rules). New 
chunk nodes are inferred in the top level as a result. 



Reasoning 

 The outcomes of the bottom and top levels are integrated 
by bottom-up activation (mentioned before; details later); 

 Another round of reasoning as above may take place  

 based on (possibly filtered) results from the current iteration 
(multiple possibilities later). Top-down activation may activate the 
(micro)feature nodes of the newly activated (possibily filtered) 
chunk nodes (on the input side of the bottom-level networks) 

 

H 



Reasoning 

 Similarity-based reasoning may be employed  

 During reasoning, a known (given or inferred) chunk may be 
automatically compared with another chunk. If the 
similarity between them is sufficiently high, then the latter 
chunk is inferred (activated).  

 Mixed rule-based and similarity-based reasoning   

 Accounting for a large variety of commonsense reasoning 
patterns (including “inheritance reasoning” and beyond). 
See Sun (1994, 1995, 2003) and Sun and Zhang (2006). 

 Examples later 



Reasoning 

Reasoning modes at the top level of the NACS: 

 Forward chaining reasoning:  

 For drawing all possible conclusions in a forward direction – from known 
conditions to new conclusions (Smith, Langston, and Nisbett, 1992) 

 Similarity-based forward chaining reasoning:  

 For drawing all possible conclusions, using rules as well as similarity-
based inferences (Sun, 1994, 1995, 2003; Sun and Zhang, 2006) 

 In both cases, there is a threshold that determine whether a conclusion 
is acceptable or not. 

 (By default, rule utility is not used in the NACS.) 



Reasoning  

 Rule-based reasoning: 

 

 

where sj
a is the activation of rule j, si

c is the activation of premise chunk node i, and 
wij

r is the weight of premise chunk node i in the rule  j. 

 When several rules activate chunk node j, the maximum 
received activation is used: 

 

 

where sck
c,a is the activation of a chunk node k,  from RBR. 



s j
a  si

c

i

 wij
r

   

sck

c,a = max
j Þck

sj

a( )

H 



Reasoning 

 Similarity-based reasoning (Tversky, 1977): 

 

 

 

 where scj
c,s is the activation of chunk node cj  from SBR, sci~cj

 is the similarity 
from chunks ci to cj, and sci

c is the total activation of chunk node ci (from 
RBR, SBR, and whatever). 

scj

c,s = max
i

sci ~cj
´ sci

c( )

H 



Reasoning 

 The default similarity measure is (see Tversky, 1977; Sun, 1995): 

 

 

 

 

  

 

 where ncicj
 is the number of features overlapping between chunks ci and cj, ncj is the 

number of features in chunk cj,  

 where Ak is the activation (1) of the kth feature included in cicj, Vk
cj is the weight of the 

kth feature, Dk is full activation (1), and f(•) is a slightly supralinear function. 

 The similarity measure is bounded in the interval     [0, 1); 
asymmetric 

sci ~cj
=

Vk

cj ´ Ak

kÎciÇcj

å

f Vk

cj ´ Dk

kÎcj

å
æ

è

ç
ç

ö

ø

÷
÷

sci ~cj
=

nciÇcj

f
cn j( )

H 

(under some simplifying assumptions) 



Reasoning:  implementation of SBR 

 Top-down activation:   An activated chunk node at the top level of the NACS 
activates all its (micro)feature nodes (dimension-value pairs) at the bottom 
level. The top-down weight from the chunk node to its (micro)feature nodes 
is uniformly 1. So same activation/strength level. 

 Bottom-up activation: 

 

 

where cj is a chunk, , Ak is the activation of its kth (micro)feature node,            is the bottom-up 

weight of its kth (micro)feature node to its chunk node, and Ss
j  is the activation of the chunk 

node for cj resulting from the bottom-up activation by all its (micro)features.  

 

 A top-down and bottom-up activation cycle implements exactly the 
similarity measure discussed above. 
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Reasoning 

The reverse containment principle (the idealized 
assumption): 

 The (micro)feature representations of the NACS chunks: 
emulate an “ideal” categorical hierarchy; reasoning without 
explicit hierarchy 

 If chunk i represents a category that is a superset (e.g., 
furniture) of the category represented by chunk j (e.g., 
table), the feature set of chunk j is a superset of the  feature 
set of chunk i and more (i.e., ncicj

 = nci). 

 The above principle may not hold in less than ideal 
categories (e.g., some messier natural categories). 

 

 H 



Reasoning 

 The reverse containment principle (the idealized 
assumption):  Will be used later in dealing with (implicit) 
conceptual hierarchies and inheritance reasoning 

 

 But explicit conceptual hierarchies can be represented as 
well 

 

 Explicit representation of hierarchies and implicit (feature-
based) representations of hierarchies: interaction and 
synergy 

H 



Reasoning 

 Mixing RBR and SBR (i.e., similarity-based forward chaining reasoning; 

Sun and Zhang, 2006): 

 

 

 where sci
c is the final activation of chunk node ci,  and  are scaling parameters for 

RBR and SBR respectively, sci
c,a is the activation of chunk node ci from RBR, and sci

c,s is 
the activation of chunk node ci from SBR.  

 Such reasoning can be applied iteratively (outcomes from one 
round used as inputs for a new round) 

 Pure RBR or pure SBR are special cases of the above (can also 
be iterated) 



sci
c max   sci

c,a,  Sci
c,s 



Reasoning 

 

 

Questions? 

Examples? Sloman simulation 
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Learning 

 Learning in the top level 

 Learning in the bottom level 

 Top-down learning in the NACS  

 Bottom-up learning in the NACS  



Learning 

Learning explicit knowledge: 

 Encoding of externally given explicit knowledge (chunks or 
rules)  

Under the control of the ACS (serves as a declarative memory)  

(with a certain encoding probability) 

 Extraction of explicit knowledge 

Extraction from the bottom level of the ACS (like the top level of the 
ACS) 

Extraction from the bottom level of the NACS (as in the ACS) 

All experienced states, actions, and so on lead to chunks 



Learning 

Learning implicit knowledge (at the bottom level of the 
NACS) 

 Training of the bottom-level networks (e.g., through the 
control of the ACS) 

 Assimilation of explicit knowledge through training bottom-
level networks (e.g., using explicit associative rules 
activated) 

 At each step, a subset of items from episodic memory may 
be used to train the bottom level (with a certain selection 
probability) 
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Coordination of the NACS and the ACS 

 Usually, the NACS is under control of the ACS  

    action-directed reasoning 

 For instance, 

 An ACS action might be to perform a round of reasoning 
within the NACS 

 The ACS (or alternatively, the MCS) specifies the type of 
reasoning to be done in the NACS (e.g., RBR, SBR, RBR + 
SBR, and so on) and (possibly) associated parameters. 



Coordination of the NACS and the ACS 

 The outcome of reasoning in the NACS may be sent back to the 
ACS. 

 If only one outcome from the NACS needs to be selected and 
sent back to the ACS, selection based on a Boltzmann 
distribution may be used (e.g., based on chunk activations). 

 Alternatively, the ACS may choose to receive all outcomes from 
NACS reasoning or all outcomes of a certain type (e.g., 
outcomes that were not part of the input). 
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Episodic memory 

 Episodic memory 

 EM stores specific past events (with time, location, and other episode-
specific info) (Tulving, 1983): 

o Action-oriented experience 

• Action rules activated/used 

• State/action  experienced, 

• State/action/result experienced 

o Non-action-oriented experience 

• Associative rules activated/used 

• Declarative chunks activated/selected 

 EM: encoding probability (so that not everything is remembered) 

 EM: recency-filtered (using BLA, with thresholding; so there is forgetting) 

 

H 



Episodic memory 

 EM chunk: a top-level node; connected to bottom-level 
(feature-based) distributed representation 

 The time stamp: a special feature 

 

 EM may be used to help learning 

 EM stores all the associative rules applied, all the associations given 
externally, all the associations representing the mapping from the input 
to the NACS and each of the resulting (inferred) chunks. 

 EM stores all the action rules applied (along with circumstances, and 
results), etc. 

 Any of those can be selected for off-line training the ACS/NACS 
(especially the bottom level) ---- “memory rehearsal and consolidation” 

H 



Episodic memory 

 Abstract episodic memory (at the bottom level) 

 AEM summarizes information of past episodes experienced by the ACS, 
instead of in individuated forms 

 Used to help learning also  

 Used to help with extracting explicit knowledge from the bottom level of 
the ACS) 

 AEM is constituted by 

o An action frequency network 

“State  Action” frequency distribution 

o A result frequency network 

“State, Action  next state” frequency distribution 

“State, Action  immediate reinforcement” frequency distribution 

H 



Episodic memory 

 AEM networks may be trained using backpropagation 
learning 

 Training may be based on the content of EM, or actual 
experiences, or both 

 In turn, AEM may be used to help training the ACS (just like 
the EM may, but with summarized info) 

 

(AEM networks may involve localist representations) 

 

H 



Episodic Memory 

 

 

Questions? 
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Simulation: Categorical Inference Task  

 The categorical inference task (Sloman, 1998; Sun & Zhang, 
2006) 

 Premise specificity 

All flowers are susceptible to thrips  All roses are susceptible to thrips 

All plants are susceptible to thrips  All roses are susceptible to thrips 

 Inclusion similarity 

All plants contain bryophytes  All flowers contain bryophytes 

All plants contain bryophytes  All mosses contain bryophytes 

 

 Which one in each pair is stronger? 



Simulation 

 Which argument is the stronger? 

 Premise specificity: flower  rose (82%) vs. plant  rose (18%) 

 Inclusion similarity: plant  flower (91%) vs. plant  mosses (9%) 

 Average likelihood of arguments 

 Premise specificity: 0.86 (flower  rose) 

 Inclusion similarity: 0.89 (plant  flower) 

 How do we explain and simulate this? 

 These results show the presence of SBR 

 If only RBR was used, relative argument strength ~ 50% 

 Likelihood of arguments ~ 1. 



Simulation 

Simulation setup: 

 Scaling parameters:  = 0.5,  = 1.0 (RBR vs. SBR; based on 
contexts) 

 The top level contains “category inclusion rules”  (background 
knowledge): 

 “Flowers are plants” 

 “Mosses are plants” 

 Etc… 

 At the bottom level, the features of the chunks (e. g., “flowers,” 
“mosses”) were represented (e.g., “petal,” “stem,” and other 
possibly unrecognizable microfeatures)  



Simulation 

Simulation process: 

1. The chunk node represented in the premise of the 
conclusion statement is activated at the top level; 

2. Which in turn activates (micro)features in the bottom level; 

3. SBR was performed through the interaction of the 
top/bottom levels; 

4. RBR was performed at the top level; 

5. The results of RBR and SBR were integrated (Max function) 



Simulation 

 Simulation results 

 Which argument is the stronger? 

Premise specificity: flower  rose (83%) vs. plant  rose (17%) 

Inclusion similarity: plant  flower (82%) vs. plant  mosses (18%) 

 Average likelihood of arguments 

Premise specificity: 0.87 (flower  rose) 

Inclusion similarity: 0.86 (plant  flower) 

 These results provide a good match to the human 
data. 



Simulation 
Other experimental conditions: 

 

• Explicitly stating the inclusion argument (human result: 0.99) 

 E.g., All plants contain bryophytes. All mosses are plants. 

   All mosses contain bryophytes. 

 

• Having participants make the categorical inclusion judgment before 
estimating the likelihoods (human result: 0.92): 

 E.g., Are all mosses plants?  

 All plants contain bryophytes.  All mosses contain bryophytes. 

 

• How do we explain/capture these? 
 



Simulation 

    In CLARION, this amounts to manipulating the weight of RBR in 
knowledge integration (changing relative weighting of RBR/SBS) 

 

 Explicitly stating the inclusion relation in the argument itself:  

 =  = 1.0  

Simulation result: Mean likelihood = 0.99 

 

 Having participants make the categorical inclusion judgment 
ahead of the time: 

 = 0.88,  = 1.0  

Simulation result: Mean likelihood = 0.91 



Simulation: Insight in Problem Solving  

 Insight problem solving (Hélie & Sun, 2010) 

 

 

 

 

 Two groups of participants: verbalization vs. no verbalization  

 Better performance by the no verbalization group 

 How do we capture/explain this? 

 

“A dealer in antique coins got an offer to buy a beautiful 

bronze coin. The coin had an emperor‟s head on one side 

and the date 544 B.C. stamped on the other. The dealer 

examined the coin, but instead of buying it, he called the 

police. Why?” (Schooler et al., 1993, p.182) 

H 



Simulation 

Simulation setup: 

 Here, each concept (e.g., carving pattern, refusal to buy, bronze 
material) is represented at the top level by a chunk node; 

 Each chunk node is connected to a set of (micro)feature nodes at the 
bottom level; 

 Top-level associative rules represent conceptual links between 
concepts (i.e., culturally shared “semantic” knowledge); 

 Similarity-based associations and soft constraint satisfaction at the 
bottom level (through feature representations) (after training) 

 Exemplars may be coded by the top-level rules  (after training) 

 

H 



Simulation 

Simulation process: 

 Simultaneous bottom-level and top-level processing: 

 A round of soft constraint satisfaction and SBR is initiated in 
the bottom level; 

 The result is sent bottom-up to activate chunk nodes; 

 RBR occurs at the top level; may (or may not) activate other 
chunk  nodes in the top level; 

 A response (combining the two levels) is stochastically chosen 
to be sent back to the ACS. 

H 



Simulation Results 

 

H 



Simulation: Insight in Problem Solving  

 Insight problem solving (Durso, Rea, & Dayton, 1994; Hélie & 
Sun, 2010) 

 

 

 

 

 Participants may ask a few questions and get yes/no answers 

 How do we capture/explain this? 

“A man walks into a bar and asks for a glass of water. 

The bartender points a shotgun at the man. The man 

says „thank you‟, and walks out. Why?” 

H 



Simulation 

 

  

Solvers Non-solvers 

H 



Simulation 

Simulation setup: 

 Each concept (e.g., each node in the graphs) is represented at the top 
level by a chunk node; 

 Each chunk node is connected to a (random) set of (micro)feature 
nodes at the bottom level; 

 Top-level rules represent the conceptual links (e.g., as in the non-
solvers’ graph) (i.e., culturally shared “semantic” knowledge); 

 Exemplars coded by the top-level rules (after training) 

 Similarity-based associations and soft constraint satisfaction through 
the bottom level (after training) 

H 



Simulation 

Simulation process: 

 At the bottom level, a round of implicit processing is initiated 
(soft constraint satisfaction and SBR); 

 The result is sent bottom-up to activate chunk nodes; 

 At the top level, RBR is used to activate other chunk nodes 
(with common, stereotyped knowledge); 

 A response (combining SBR and RBR) is stochastically chosen to 
be sent back to the ACS  (which may then serve as questions) 

 External answers may be coded at the top level (thus altering 
explicit knowledge) 

H 



Simulation 

 



P(x i) 
exi 

e
x j 

j



H 
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Theorems 

 Many common reasoning patterns can be handled by CLARION: 

 Inexact information 

 Incomplete information 

 Similarity matching 

 Superclass to subclass inheritance 

 Subclass to superclass (reverse)“inheritance” 

 Cancellation of inheritance (of both types) 

 Mixed rule-based and similarity-based reasoning 

 Etc. 

 

 Accounts for many everyday commonsense reasoning situations (Sun, 1994) 



Theorems 

Case 1: Inexact information 

Theorem: 

Network state: Let ci and cj be chunks represented in the top 
level of the NACS by chunk nodes, wij

r be a rule in the top level 
of the NACS linking chunk nodes i and j. Assume that si < 1. 

Result:   sj = si 

 

(i.e., inexact information leads to inexact conclusions) 

   

Q 



Theorems 

 Case 2: Incomplete information 

Theorem: 

Network state: Let ci1, ci2, ci3, cj, be chunks represented in the 
top level of the NACS, wi1j

r, wi2j
r, wi3j

r, be the rule in the top 
level of the NACS linking chunk nodes ik and j. Assume that 
si1 = si2 = 1 and that si3 = 0. 

Result:   sj = 2/3 

 

(i.e., partial information leads to inexact conclusions) 

 

 Q 



Theorems 

Case 3: Similarity matching 

Theorem: 

Network state: Let ci, cj, ck be chunks represented in the top level of 
the NACS, sci~cj be the similarity from I to j, and wjk

r be the rule in the 
top level of the NACS linking chunk nodes j and k. Assume that si = 1. 

Result:               

 

 

(i.e., similar conditions lead to inexact conclusions, 
proportional to the similarity) 

   

sk = sci~cj  =
nciÇc j

f nj( )

Q 



Theorems 

Case 4: Superclass-to-subclass inheritance 

Theorem: 

Network state: Let ci, cj, ck be chunks represented in the top 
level of the NACS, the category represented by ci is a proper 
subset of the category represented by cj, and wjk

r be a rule in 
the top level of the NACS linking chunks j and k. Assume that si 
= 1 

Result:   sk 1 

 

(i.e. properties of the superclass can be inferred for the 
subclass ) 

Q 



Theorems: Examples 

ci (fido) 

cj (dog) ck (has 

four legs) 

Case 4: Superclass-to-subclass inheritance 

 

Q 



Theorems 

Case 5: Subclass-to-superclass reverse “inheritance” 

Theorem: 
Network state: Let ci, cj, ck be chunks represented in the top level of 

the NACS, the category represented by ci is a proper subset of the 
category represented by cj, and wik

r be a rule in the top level of 
the NACS linking chunks i and k. Assume that sj = 1. 

Result:  sk < 1 

 

(i.e., properties of the subclass may be plausibly inferred for the 
superclass –- inexact/uncertain conclusions) 

 

         

Q 



Theorems 

Case 6: Cancellation of superclass-to-subclass 
inheritance 

Theorem: 

Network state: Let ci, cj, ck, cm be chunks represented in the top 
level of the NACS, the category represented by ci is a proper subset 
of the category represented by cj, and wjk

r  and wim
r be rules in the 

top level of the NACS. Assume that si= 1. 

Result:  sm = 1 > sk 

 

(i.e. superclass-to-subclass inheritance inferences may be cancelled by 
contradictory information) 

Q 



Theorems: Examples 

ci (fido) 

cj (dog) ck (has 

four legs) 

Case 6: Cancellation of superclass-to-subclass inheritance 

 

cm (has 

three legs) 

Q 



Theorems 

Case 7: Cancellation of subclass-to-superclass reverse 
“inheritance” 

Theorem: 

Network state: Let ci, cj, ck, cm be chunks represented in the top level 
of the NACS, the category represented by cj is a proper subset of the 
category represented by ci, and wjk

r  and wim
r be rules in the top level 

of the NACS. Assume that si = 1. 

Result:  sm = 1 > sk 

 

(i.e., subclass-to-superclass “inheritance” may be cancelled by 
contradictory information) 

Q 



Theorems: Examples 

ci (fido) 

cj (dog) ck (has 

four legs) 

Case 7: Cancellation of subclass-to-superclass reverse “inheritance” (i.e., 
cancellation of induction) 

cm (has 

three legs) 

Q 



Theorems 

Case 8: Mixed rules and similarities 

Theorem 1: 
State of the network: Let ci, cj, ck, be chunks represented in the top 

level of the NACS, scj~ck be the similarity between chunks j and k, 
and wij

r be a rule in the top level of the NACS between chunks i 
and j. Assume that si = 1. 

Result:    

 

   

(i.e., conclusions similar to the one inferred may be plausible, with 
the plausibility proportional to the similarity)   



sk =
nc jck

f nk 

Q 



Theorems 

Case 8: Mixed rules and similarities 

Theorem 2: 

State of the network: Let ci, cj, ck, be chunks represented in 
the top level of the NACS, and wij

r, wjk
r be rules in the top 

level of the NACS. Assume that si = 1. 

Result: sk = 1      

 

(i.e., rule chaining)          

Q 



Theorems 

Case 8: Mixed rules and similarities 

Theorem 3: 
State of the network: Let ci, cj, ck, cm be chunks represented in 

the top level of the NACS, sci~cj is the similarity between 
chunks i and j, and wjk

r  and wkm
r be rules in the top level of 

the NACS. Assume that si = 1. 

Result:   

 

 

(i.e. similarity matching then rule chaining)             

Q 

sm=
nciÇcj

f nj( )



Theorems 

Case 8: Mixed rules and similarities 

Theorem 4: 

State of the network: Let ci, cj, ck, cm be chunks represented in 
the top level of the NACS, scj~ck is the similarity between 
chunks j and k, and wij

r  and wkm
r be rules in the top level of 

the NACS. Assume that si = 1. 

Result: 

 

 

(i.e., rule, then similarity, then rule)               

Q 



sm =
nc jck

f nk 



Theorems 

Case 8: Mixed rules and similarities 

Theorem 5: 
State of the network: Let ci, cj, ck, cm be chunks represented in 

the top level of the NACS, sck~cm is the similarity between 
chunks k and m, and wij

r  and wjk
r be rules in the top level 

of the NACS. Assume that si = 1. 

Result:     

 

 

    (i.e., rule chaining then similarity)       

Q 



sm =
nckcm

f nm 



Theorems 

Case 8: Mixed rules and similarities 

Theorem 6: 
State of the network: Let ci, cj, ck, cm be chunks represented in the 

top level of the NACS, sci~cj and sck~cm are similarity measures 
between the chunks, and wjk

r  is a rule in the top level of the 
NACS between chunks j and k. Assume that si = 1. 

Result:  

 

 

(i.e., similarity, rule, then similarity)              

Q 



sm =
ncic j

f n j 

nckcm
f nm 



Theorems: Analyzing Some Details 

Case 4: Superclass to subclass inheritance 
Network state: 

Let ci, cj, ck be chunks in the top level of the NACS, the category represented by ci is a 
proper subset of the category represented by cj, and wjk

r be a rule in the top level of 
the NACS linking chunks j and k. Assume that si = 1. 

Derivation: 

 

 

 

 In words, chunk k is activated because chunk i fully activates chunk j (up to the slight 
non-linearity of f(), which is negligible). Chunk j has a top-level rule that transmits its 
activation to chunk k. 


sk = si  sci ~c j w jk

r =
ncic j

f n j 

n j

f n j 
1

Q 



Theorems: Analyzing Some Details 

ci (fido) 

cj (dog) ck (has 

four legs) 

Case 4: Superclass to subclass inheritance 

 

Q 



Theorems: Analyzing Some Details 
Case 6: Cancellation of superclass to subclass inheritance 
Network state: 

Let ci, cj, ck, cm be chunks in the top level of the NACS, the category represented by ci is a 
proper subset of the category represented by cj, and wjk

r  and wim
r be rules in the top level 

of the NACS. Assume that si = 1. 

Derivation: 

 

 

 

 

 

 

 Hence, sm > sk. In words, chunk k is almost fully activated, but the denominator is slightly 
bigger than the numerator in its derivation [because f() is super-linear]. In contrast, chunk 
m is fully activated, because top-level rules are exact. This shows the superiority of rule-
based reasoning over similarity-based reasoning. 



sk = si  sc i ~cj wjk
r

=
nc ic j

f nj 

=
nj

f nj 
1



sm = si wim
r

 1

Q 



Theorems: Analyzing Some Details 

ci (fido) 

cj (dog) ck (has 

four legs) 

Case 6: Cancellation of superclass to subclass inheritance 

 

cm (has 

three legs) 

Q 



Theorems: Analyzing Some Details 

Case 7: Cancellation of subclass to superclass “inheritance” (i.e., reversing induction) 

Network state: 

Let ci, cj, ck, cm be chunks in the top level of the NACS, the category represented by ci is a 
proper subset of the category represented by cj, and wim

r  and wjk
r be rules in the top 

level of the NACS. Assume that sj = 1. 

Derivation: 

  

 

 

 

Hence, sk > sm. In words, chunk m is partially activated, because chunk i has more features 
than chunk j (remember that chunk i represents a proper subset of chunk j). On the 
other hand, chunk k is fully activated, because top-level rules are exact. 

sm = s j  scj ~ci w im

r

=
nc j ci

f ni 


n j

f ni 

1



sk = s j w jk

r

1

Q 



Theorems: Analyzing Some Details 

ci (fido) 

cj (dog) ck (has 

four legs) 

Case 7: Cancellation of subclass to superclass “inheritance” (i.e., reversing 
induction) 

cm (has 

three legs) 

Q 



Formal properties and related theorems 
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Summary 

1. Representation 

2. Reasoning 

3. Learning 

4. Coordination of the NACS and the ACS 

5. Episodic memory 

6. Simulation examples 

7. Formal properties and related theorems 

8. Summary 



Summary 

 The Non-Action-Centered Subsystem (NACS) of 
CLARION:  divided into the top level and the 
bottom level (same as other subsystems). 

 The top level: explicit declarative knowledge in the 
form of rules and chunk nodes (concepts). 

 The bottom level: implicit declarative knowledge in 
the form of (micro)feature nodes,  

with feature similarity matching, associative mapping, and 
soft constraint satisfaction. 



Summary 

 RBR is captured by the top level 

 SBR is captured through the interaction of the bottom and 
the top level (the activation flows between the two levels, 
modulated by top-down weights and bottom-up weights, 
which capture similarity measures) 

 The outcomes of the two levels are integrated (with Max 
at the top level)  

 CLARION can account for a variety of common reasoning 
patterns through varying amounts of SBR and RBR, as well 
as associative mapping and soft constraint satisfaction. 

 

 



Summary 

 Explicit learning: from external sources or extracted 
from the bottom level of the ACS or the NACS 

 Implicit learning: by assimilation of explicit knowledge 
given or by learning, for example, using the contents 
of EM. 



Summary 

 

 

 

Questions about the NACS? 


