
The CLARION Cognitive
Architecture: A Tutorial

Part 2 – The Action-
Centered Subsystem

Nick Wilson, Michael Lynch, Ron Sun, Sébastien Hélie

Cognitive Science, Rensselaer Polytechnic Institute

Outline

1. Representation in the ACS

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning in the ACS

1. Bottom-Level Learning

2. Top-Level Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Representation

1. Representation in the ACS

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning in the ACS

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Representation

Top-

level

Bottom-
level

Action-centered

Explicit
Representation

Action-centered

Implicit
Representation

Non-action-centered

Explicit
Representation

Non-action-centered

Implicit
Representation

ACS NACS

Representation

Action Decision making process:
1. Observe the current state.

2. Compute in the bottom level the “value” of each of the possible actions in the
current state (e.g., Q-values). E.g., stochastically choose one action.

3. Find out all the possible actions at the top level, based on the current state
information and the existing rules in place at the top level. E.g., stochastically
choose one action.

4. Choose an appropriate action by stochastically selecting or combining the
outcomes of the top level and the bottom level.

5. Perform the selected action and observe the next state along with any feedback
(i.e. reward/reinforcement).

6. Update the bottom level in accordance with, e.g., reinforcement learning (e.g., Q-
learning, implemented with a backpropogation neural network).

7. Update the top level using an appropriate learning algorithm (e.g., for constructing,
refining, or deleting explicit rules).

8. Go back to step 1.

Representation

1. Representation in the ACS

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning in the ACS

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Representation

 Bottom Level

 Implicit knowledge is:

 Less accessible

 Reactive (as opposed to, e.g., explicit planning); fast decision making

 Inaccessible nature of implicit (tacit) knowledge (Reber, 1989; Sun,
2002) may be captured by distributed representations

 a theoretical interpretation (amply argued for before; see Sun,
1994, 2002)

 E.g., Backpropagation Neural Networks:

 Representational units (in, e.g., hidden layers) are capable of accomplishing
tasks but are generally not individually meaningful --- renders distributed
representation less accessible.

Representation

 At the bottom level, Implicit Decision Networks (IDNs),
implemented with Backpropagation neural networks

 Three types of inputs:

 Sensory Input (visual, auditory, …., etc.)

 Working Memory Items

 Current Goal (an item from the Goal Structure)

 represented as dimension-value pairs:

 (dim1, val1) (dim2, val2) … (dimn, valn)

 Each pair corresponds to one input node of the network

Representation

 Actions are represented as nodes on the output layer.

 Three types of actions:

o Working Memory Actions

o Goal Actions

o External Actions

 Each action consists of one or more action dimensions

 in the form:

 (dim1, val1) (dim2, val2) … (dimn, valn)

 Each action may be activated to an extent

Representation

 Chunks are collections of dimension/value pairs that represent
either conditions or actions of rules of the top level.

 Chunk-idi: (dimi1, vali1) (dimi2, vali2)…(dimini
, valini

)

e.g., table-1: (size, large) (color, white) (number-of-legs, 4)

 Each chunk (as a whole) is represented by a node in the top
level

 Each dimension/value pair is represented by a node in the
bottom level.

 Dual representation: Localist versus distributed representation

Representation

 The level of activation for a node (within an Implicit Decision
Network, i.e., ACS bottom level) is calculated using a sigmoid
activation function:

 So scaled to [0, 1]

o =
1

1+ e
- wi xi

i =0

n

å

where xi is the value of input I (to the node), wi is the weight of input i,
and n is the number of inputs to the node

Q

Representation

 An action is chosen based on a Boltzmann distribution of the
activations of the output-layer nodes.

 The probability of selecting a particular action i in the bottom-
level is (in accordance with the Boltzmann distribution):

p i | x
eA i /

e
A j /

j

where Ai is the activation of action i and is the noise (temperature)
parameter

Rationale: different levels of stochasticity (randonness or temperature)

Q

Representation

WM Action

Network

External Action
Network

GS Action

Network

Goal

Structure

Working

Memory

WM action

External
action

WM content

GS action

Current goal
Sensory input

Representation

Questions?

Representation

1. Representation in the ACS

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning in the ACS

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Representation
 Top Level

 Explicit Rules:

o more accessible

o “consciously” applied; “rationally” deduced actions

o slower than implicit processes, but also perhaps more precise

o “Condition Action” pairs: with Condition Chunk, Action Chunk

 Rules in the top level come from several sources (more on this later):

o Extracted and Refined Rules (RER rules)

o Independently Learned Rules (IRL rules)

o Fixed Rules (FR rules)

o (rationale: different types of learning)

Representation

 A top-level rule contains one condition chunk and one
action chunk (possibly with multiple dimensions)

o Chunk nodes connected to bottom-level (micro)features

 Each action chunk is associated with these factors:

 Rule support and conclusion strength (activation)

 Base-Level Activation (BLA)

 Recency-based value (for priming; e.g., used for determining RTs)

 Utility (U)

 Measures the usefulness of a rule based on the cost and benefit of
applying the rule (e.g., used for selecting rules)

 other numerical measures

Representation

 Base-Level Activation (BLA): measures the odds of needing a
rule based on the history of its use (Anderson, 1993)

 Can be used to highlight pertinent rules; capture the notion of priming

 BLA: a recency-based value --- gradually decaying “activation”:

B j
r iB j

r c tl
d

l1

n

where tl is the ith use of rule j and iBj is the initial value.
By default c = 2, d = 0.5

Q

Representation

 The activation of the condition chunk is determined by (when using partial
match):

 From the activation of the condition chunk node, the support for rule k is
computed (used for rule selection):

where k indicates rule k at the top level, Sr
k is the support for rule k, Sc

ck is the strength of condition
chunk ck (representing the condition of rule k), and Wr

k is the weight of the rule k (where the
default is 1).

 The strength of the conclusion chunk node: combining multiple measures of rule
support for the same conclusion chunk node, using max (for level combination)

Sck
c Ai

i

 Wi

ck

where Ai is the activation of the ith dimension of chunk c and Wi = 1/n (by
default), where n is the number of dimensions in chunk ck

Q

sk

r = sck

c ´ wr

k

Representation
 Rule selection at the top level:

 based on a Boltzmann distribution of the rule support
values, or the utility values of the rules (which may be set to a
constant if not needed)

 Utility may be calculated using the following equation:

jj

r

j costbenefitU

where is a scaling factor balancing measurements of benefits
and costs

Q

Representation*

 Benefit:

 Cost:

benefit j
c7 PM(j)

c8 PM(j) NM(j)

cost j =
execution time of rule j

average execution time of rules

where PM(j) = number of positive rule matches and NM(j) =
number of negative rule matches. By default c7 = 1, c8 = 2

where values need to be estimated (domain-specific)

Q

Representation

Questions?

Learning

1. Representation in the ACS

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning in the ACS
1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Learning

 Bottom-Level Learning

 uses numerical algorithms to perform gradual error correction within the
bottom level (IDN’s)

 Three learning methods:

o Q-Learning (reinforcement learning)

o Simplified Q-Learning

o Standard Backpropagation (supervised learning)

 Top-Level Rule Learning

 Three rule learning methods:

o Bottom-up rule extraction and refinement (RER)

o Independent Rule Learning (IRL)

o Fixed Rule (FR)

Learning

1. Representation

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning

1. Bottom-Level Implicit Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Learning

 Standard Backpropagation (for three-layer network)

 Calculate error in the output layer using:

 Output weights are updated as follows:

erri target(x,ai)Q(x,ai)

where target(x,ai) is the target output for node i and Q(x,ai) is the
actual output of node i

w ji x ji j

 j errjo j (1o j)

where xji is the ith input of output unit j and oj is the output of unit j

Q

Learning*

 Standard Backpropagation (cont.)

 Weights are updated in the hidden layer by:

k

kjkjjj

jijji

woo

xw

)1(

where xji is the ith input to hidden unit j, is the learning rate,
oj is the output of hidden unit j, and k denotes all of the units
downstream (in the output layer) of hidden unit j

Q

Learning

 Q-Learning

 A reinforcement learning method (as opposed to supervised learning)

 Updating based on the temporal difference in evaluating the current
state and the current action chosen

 May be implemented using backpropagation, except error is calculated
in the output layer using:

erri 0 otherwise

re(y)Q(x,ai) if ai a
where r + e(y) estimates the (discounted) total reinforcement
to be received from the current point on.

Q

 Learning

 Q-Learning (cont.)

 Q(x,a) approaches:

 e(y) is calculated using:

Q

Q(x,a) ai :i1,2,3,...

 max (iri
i 0

)

where is a discount factor, ai is an action that can be performed at step
i, and ri is the reinforcement received at step i

)),((max)(byQye b

where y is the new state resulting from action a in state x

Learning

 Simplified Q-Learning

 Basic form (atemporal) reinforcement learning

 Temporal credit assignment is not involved

 Most useful when immediate feedback is available and sufficient

 Error is calculated in the output layer using:

erri 0 otherwise

rQ(x,ai) if ai a

Q

Learning

 Context for Reinforcement Learning --- Two loops:

 Sensory Input → Action (e.g., by implicit reactive routines
within the ACS, formed by, e.g., reinforcement learning)

 Sensory Input → MS → MCS → Reinforcement signal (to be
used in the ACS for reinforcement learning)

 In addition to other loops

Learning

Questions?

Learning

1. Representation

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning

1. Bottom-Level Learning

2. Top-Level Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Learning

 Top Level Learning

 Bottom-up learning --- rule extraction and refinement (RER)

 “Condition → Action” pairs are extracted from the bottom level and refined
(generalized, specialized, or deleted) as necessary

 Independent rule learning (IRL)

 Rules of various forms are independently generated (either randomly or in a
domain-specific order) and then refined or deleted as needed

 Fixed Rules

 Rules are obtained from prior experiences, or provided from external
sources

Learning
 Rule extraction and refinement (RER)

 Basic idea of the algorithm:

 If an action decided by the bottom level is successful (according to a
criterion), then a rule is constructed and added to the top level

 In subsequent interactions with the world, the rule is refined by considering
the outcome of applying the rule:

• If the outcome is successful, the condition of the rule may be
generalized to make it more universal

• If the outcome is not successful, then the condition of the rule should
be made more specific

Learning

 Rule extraction

 Check the current criterion for rule extraction

 If the result is successful according to the current rule extraction criterion,
and there is no rule matching the current state and action, then perform
extraction of a new rule

• “Condition → Action”

• Add the extracted rule to the action rule store at the top level

Learning

 Rule extraction (cont.)

 A rule is extracted based on a (domain-specific) positivity criterion

 e.g.,

 This determines whether or not action a is reasonably good (Sun and
Peterson, 1997, 1998)

 In cases where feedback is immediately available (and there is no
temporal sequences), the positivity criterion can be simplified

 e.g., r > thresholdRER

RER
b

axQrbyQ threshold),()),((max

Q

Learning

 Refinement

 Extracted rules (or Independently learned rules) have rule
statistics that guide rule refinement --- for each rule and its
variations:

• Positive Match PM:=PM+1 when the positivity criterion is met

• Negative Match NM:=NM+1 when the positivity criterion is not met

• At the end of each episode (e.g., a game, an action sequence, etc.),
PM and NM are discounted by multiplying them by .9

Learning

 Refinement (cont.)

 Based on PM and NM, an information gain measure (IG) may be
calculated:

 Essentially compares the percentages of positive matches under
different conditions: A vs. B

 If A can improve the percentage to a certain degree over B, then A is
considered better than B

IG(A,B) log2(
PMa (A) c1

PMa (A) NMa (A) c2

) log2(
PMa (B) c1

PMa (A) NMa (A) c2

)

where A and B are two different rule conditions that lead to the same action
a, c1 and c2 are constants (1 and 2 respectively by default)

Q

Learning

 Generalization

 Check the current criterion for Generalization

• If the result is successful according to the current generalization
criterion, then generalize the rules matching the current state and
action

• Remove these rules from the rule store

• Add the generalized versions of these rules to the rule store (at the
top level)

Learning

 Generalization (cont.)

 A rule can be generalized using the information gain measure:

• If IG(C, all) > threshold1 and maxc’ IG(C’, C) 0 , then set

argmaxC’ (IG (C’, C)) as the new (generalized) condition of the rule

• Reset all the rule statistics

• Other possibilities: one-or-all, etc.

where C is the current condition of the rule, all is the match-all rule,
and C’ is a modified condition such that C’ = “C plus one value”

Learning

 Specialization

 Check the current criterion for Specialization

• If the result is unsuccessful according to the current specialization
criterion then revise all the rules matching the current state and
action

• Remove the rules from the rule store

• Add the revised (specialized) rules into the rule store (at the
top level)

Learning

 Specialization (cont.)
 A rule can be specialized using the information gain measure:

• If IG(C,all) < threshold2 and maxC’IG(C’,C) > 0, then set

 argmaxC’ (IG (C’, C)) as the new (specialized) condition of the rule

where C is the current state condition of the rule, all is the match-all
rule, C’ is a modified condition such that C’ = “C minus one value”

• If any dimension in C has no value left after specialization then the rule is
deleted

• Reset all the rule statistics

Learning

 Example

SRT Task (Curran and Keele, 1993)

• Repeating sequence of X marks each in 1 of 4 possible positions; press
corresponding buttons

• Subjects learn to predict new positions on the basis of preceding positions

Learn the sequential relations embedded in the sequence

Leads to faster responding

Learning

 Example (cont.): modeling

 Learning (by iterative weight updating) in the bottom level promotes
implicit knowledge formation (embedded in weights)

 Resulting weights specify a function relating previous positions (input)
to current position (output)

 Acquired sequential knowledge at the bottom level can lead to the
extraction of explicit knowledge at the top level

Learning

 Example (cont.)

 The initial extraction step creates a rule that corresponds to the current
input and output (as determined by the bottom level)

 Generalization adds more possible values to the condition of the rule so
that the rule may have more chances of matching new input

 Specialization adds constraints to the rule (by removing possible
matching values) to make the rule less likely to match new input

 Applicability of these steps determined by the IG measure (discussed
before)

Learning

 Example (cont.)

 Suppose sequence is:

 1 2 3 2 3 4

 Initially extracted rule may be:

 1 2 3 2 3 --> 4

 Generalization may lead to a simplified rule:

 * 2 3 2 3 --> 4 (where * stands for “don’t care”)

 * 2 * 2 3 --> 4

and so on

 Continued generalizations and specializations are likely to happen, as
determined by the IG measure (which is in turn determined by the
performance of the rule)

 Incorrect generalization may occur (e.g., 2 3 4), which may then be
revised

Learning (RER)

Questions?

Learning

 Independent Rule Learning (IRL)

 A variation of rule extraction and refinement

 In which, the bottom level is not used for initial rule extraction.

 Rules are generated either randomly or through a domain-specific order

 Then these rules are tested through experience using the IG measure

 If the rule IG measure is below a threshold, then the rule is refined or
deleted.

Learning

 Independent Rule Learning (cont.)

 Positivity criterion can be based on information from the bottom level
(similar to RER):

 e.g.,

 Positivity criterion can also be based on information from external
sources (such as immediate feedback/reinforcement)

IRL
b

thresholdaxQrbyQ),()),((max

Q

Learning

 Independent Rule Learning (cont.)

 One possible information gain measure for IRL rule testing is:

 If IG(C, random) < threshold3 then delete the rule

 This is equivalent to:

 Specialization/generalization are also possible (similar to RER); assuming
the most general (match-all) condition to begin with.

If IG(C) log2(
PMa (C) c5

PM(C) NM(C) c6

) threshold4 then delete rule C

Q

Learning

 Fixed Rules (FR)

 Externally given or acquired from prior experiences (or by pre-
endowment)

 Enables top-down learning (assimilation)

 Rules in the top level may guide implicit learning in the bottom level.

 Can represent more than just propositional structures

 More complex interaction, and more complex action sequences between
conditions and actions, akin to:

• Schemas (Arbib, 1980; Dretcher, 1989)

• Abstract behaviors (Mataric, 2001)

Q

Learning (IRL and FR)

Questions?

Level Integration

1. Representation

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Level Integration

 Several level integration methods:

 Stochastic Selection

 Combination

 Bottom-up Rectification

 Top-down Guidance

 Assumes one bottom-level network and one top-level rule
group

 Details on coordinating multiple bottom-level networks and
top-level rule groups can be found in the technical descriptions
(Sun, 2003)

Q

Level Integration

 Stochastic Selection

At each step, the probability of using any given rule set is:

PRER = probability of using RER rule set

PIRL = probability of using IRL rule set

PFR = probability of using FR rule set

The probability of using the bottom level is:

PBL = 1 - PRER - PIRL - PFR

Q

Level Integration

 Selection probabilities may be:

 Fixed (pre-set/constant; e.g. set by the Meta-Cognitive Subsystem)

 Variable (see later)

 Deterministic selection of either the top level or the bottom
level:

 is a special case of stochastic selection --- probability=1/0

 Selection probabilities in this case may be chosen by the
Meta-Cognitive Subsystem (discussed later)

Level Integration

 Variable selection probabilities: may be calculated using
“probability matching”, as follows:

PBL
BL srBL

PRER
RER srRER

PIRL
IRL srIRL

PFR
FR srFR

where sr stands for success rate, is a weighting parameter, and
 = BL x srBL+ RER x srRER + IRL x srIRL + FR x srFR

Q

Level Integration

 Combination

 Combining activations from the top level with activations (Q-values) in
the bottom level, in some way

 Top-down guidance vs. bottom-up rectification

Positive conclusions reached in the top level can add to action
recommendations in the bottom level; Negative conclusions reached in
the top level can veto actions in the bottom level

Or, bottom-level selections are verified by the top-level rules

 Then selecting an action based on the combined values using a
Boltzmann distribution

H

Level Integration

 Bottom-up Rectification:

 Bottom-level outcome is sent to the top level

 The top level rectifies and utilizes outcomes from the
bottom level with the knowledge in the top level

 Likely to happen in reasoning situations, where final
outcomes are explicit (Nisbett and Wilson, 1977)

 (One possibility: weighted sum combination)

H

Level Integration

 Top-down Guidance:

 Top-level outcome is sent down to the bottom level

 The bottom level utilizes the outcome of the top level, along
with its own knowledge, in making action decisions

 Most likely happens in skill learning and skilled performance

 (One possibility: weighted sum combination)

H

Overview

Action Decision making process:
1. Observe the current state.

2. Compute in the bottom level the “value” of each of the possible actions in the
current state. E.g., stochastically choose one action.

3. Find out all the possible actions at the top level, based on the current state
information and the existing rules in place at the top level. E.g., stochastically
choose one rule and hence one action.

4. Choose an appropriate action by stochastically selecting or combining the
outcomes of the top level and the bottom level.

5. Perform the selected action and observe the next state along with any feedback
(i.e. reward/reinforcement).

6. Update the bottom level in accordance with, e.g., reinforcement learning (e.g., Q-
learning, implemented with a backpropagation neural network).

7. Update the top level using an appropriate learning algorithm (e.g., for constructing,
refining, and deleting explicit rules).

8. Go back to step 1.

Questions?

Level Integration

Working Memory

1. Representation

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

H

Working Memory

 For storing information on a temporary basis

 Facilitating subsequent action decision-making and/or reasoning

 Working memory involves (cf. Baddelay, 1995):

 Action-directed (“deliberate”) encoding of information

(as opposed to automatic encoding)

 Gradual fading of information

 Action-directed re-encoding (“refreshing”) of information

 Limited storage capacity

 Multiple stores

H

Working Memory

 May be divided into multiple sensory related sections:

 Visuospatial information

 Auditory/verbal information

 Other types of information

 Each section consists of a certain number of slots

 Each can hold the content of a chunk

 Capacity is limited

H

Working Memory

 Working memory actions may:

 Add items into working memory

Set i: the content of a chunk is stored in working memory slot i

Set {i}: the content of multiple chunks are stored in multiple slots in working
memory

 Remove items from working memory

Reset i: the content of the ith working memory slot is removed

Reset-all-WM: removes all items from working memory

Do-nothing

 Working Memory actions can be performed by either or both levels of the
ACS

H

Working Memory

 Base-level activation (BLA) for WM:

 Determines how long past information should be kept around (when
there is no reset action)

 Recency-based:

Bi
w iBi

w c tl
d

l1

n

where i indicates an item in working memory, l indicates the lth
setting of that item, tl is the time since the lth setting, and iB is the
initial value of B (c and d are constants)

H

Working Memory

 If the base-level activation of working memory item i is above a threshold:

 then the working memory item i is used as input to the bottom level and the
top level (otherwise invisible)

Bi
w thresholdWM

H

Working Memory and NACS

 Working memory may be used to transmit information
between the Action-Centered (ACS) and the Non-Action-
Centered (NACS) subsystem (discussed later)

 Working memory is minimally necessary for storing information
from the non-action-centered subsystem,

 Must be able to retrieve and hold conclusions from reasoning so it can be
used for action decision-making.

 Must be able to extract additional declarative information related to the
current state and action (including related past episodes, which is also
stored in the NACS)

H

Working Memory

Questions?

H

Simulation Examples

1. Representation

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Simulation Examples

 Serial reaction time task (Curran and Keele, 1993)

 A sequence of X marks

 Two phases:

• Single task learning

• Dual task transfer

 Three groups of subjects:

• Less aware

• More aware

• Intentional

H

Simulation Examples

3 (intentional vs. more aware vs. less aware) X 2 (sequential vs. random) ANOVA:

 significant difference across groups during the STL phase

 No difference across groups during the DTT phase

H

Simulation Examples

 Model Setup

 Simplified Q-backpropagation learning at the bottom level

 7x6 input units (both primary and secondary tasks) and 5 output units

 RER rule learning at the top level

 Three groups:

• Less aware: use higher rule learning thresholds

• More aware: use lower rule learning thresholds

• Intentional: code given knowledge in the top level

 Linear transformation: RTi = a ⨯ ei + b

 ANOVA confirmed the data pattern

H

Simulation Examples

Plot from Cleeremans (1993) Simulation

Human data from Curran & Keele

Plot from CLARION Simulation
H H

Simulation Examples

 Letter counting task (Rabinowitz and Goldberg, 1995)

 Experiment 1

• letter1 + number = letter2

• The consistent group:

• 36 blocks of training (the same 12 addition problems in each)

• The varied group:

• 6 blocks of training (the same 72 addition problems in each)

• Transfer phase:

• 12 new addition problems (repeated 3 times)

Simulation Examples

 Letter counting task (cont.)

 Experiment 2

• Same training

• Transfer:

• 12 subtraction problems (repeated 3 times)

• letter1 - number = letter2 (reverse of addition problems)

Simulation Examples

 Experiment 1 Experiment 2

Simulation Examples

 Model Setup

 Simplified Q-backpropagation learning in the bottom level ACS (IDNs)

 36 input units, 26 output units, and 30 hidden units

 Fixed Rules

• If goal=addition-counting, start-letter=x, number=y, then starting with x,
repeat y times counting up

• If goal=subtraction-counting, start-letter=x, number=y, then starting with x,
repeat y times counting down

Q

Simulation Examples

 Model Setup (cont.)

 Rule utility (used for rule selection) and rule base-level activation (used
for response time)

 Response Time:

DTTL = y ´ tcounting + c ´
1

BLA(rule)

DTBL = constant

Q

Simulation Examples
 Experiment 1: CLARION vs. ACT-R

Rabinowitz and Goldberg
Experimental Results

CLARION Simulation Results ACT-R Simulation Results

Simulation Examples
 Experiment 2: CLARION vs. ACT-R (cont.)

CLARION Simulation Results ACT-R Simulation Results

Rabinowitz and Goldberg
Experimental Results

Simulation Examples

Learning curve of Rabinowitz and
Goldberg (1995)

Learning curve during the simulation

Simulation Examples

Level selection probability of the
consistent group during training in the
simulation

Level selection probability of the varied
group during training in the simulation

Simulation Examples

Questions?

Simulation Examples

 Minefield navigation task (Sun et al 2001)

H

Simulation Examples

 Four training conditions:

 Standard training condition

 Verbalization condition

 Dual-task condition

 Transfer conditions

H

Simulation Examples

 Model Setup

 The effect of the dual task is captured by reduced top-level activities
(through raised rule learning thresholds)

 The effect of verbalization stems from heightened rule learning activities
(through lowered rule learning thresholds)

 The model starts with no more a priori knowledge about the task than a
typical human subject

 10 human subjects were compared to 10 model subjects in each
experiment

H

Simulation Examples

 The effect of the dual task condition on learning:

 2 (human vs. model) X 2 (single vs. dual task) ANOVA indicated a significant
main effect for single vs. dual task (p < .01), but no interaction between
groups and task types

H

Simulation Examples

 The effect of the dual task condition on transfer

 2 (human vs. model) X 2 (single vs. dual task) ANOVA revealed a significant
main effect of single vs. dual task (p < .05), and no interaction between
groups and task types

H

Simulation Examples

 The effect of verbalization

 4 (days) X 2 (human vs. model) X 2 (verbalization vs. Standard) ANOVA indicated that
both human and model subjects exhibited a significant increase in performance due
to verbalization (p < .01), but that the difference associated with verbalization for the
two groups was not significant

H

Simulation Examples

 Academic science task (Naveh and Sun, 2006) --- Lotka’s law

 Number of authors contributing a certain number of articles follows
an inverse power law: a Zipf distribution (Lotka, 1926)

 Simon (1957): a simple stochastic process for approximating Lotka’s
law

 The probability that a paper will be published by an author who has
published i articles is a/ik

 Gilbert (1997) simulated Lotka’s law

 Assumed that authors were non-cognitive and interchangeable; it neglected
a host of cognitive phenomena that characterized scientific inquiry (e.g.,
learning, creativity, evolution of field expertise, etc.)

H

Simulation Examples

 Setup for simulating academic publishing data:

o Multiple agents: with limited academic life spans (in part, depending on
productivity)

o Each paper: based on combining past ideas (from past papers), with
local optimization

o Action sequences in generating papers: decided based on implicit and
explicit knowledge, with learning from experiences

o Evaluated based on a set of criteria (i.e., refereed)

Simulation Examples

H

Simulation Examples

H

Simulation Examples*

 The CLARION simulation data for the two journals matched the
real-world data well

 The CLARION simulation data for the two journals could be fit
to the power curve f(i) = a/ik (as in Simon’s, but not built in)

Q

Simulation Examples

 The number of papers per author reflected cognitive processes
of authors, as opposed to being based on auxiliary assumptions

 Emergent, not a result of direct attempts to match the human
data

 More distance between mechanisms and outcomes, to come
up with deeper explanations

H

Simulation Examples

 Varying cognitive parameters:

 Most prolific under a moderately high temperature setting:

 Serendipity in scientific discovery!

H

Simulation Examples

 Varying cognitive parameters:

 Generate different communities producing different numbers of
papers, by varying cognitive parameters

 Power curves are obtained under different cognitive parameter
settings

H

Simulation Examples

 Varying cognitive parameters:

 Cognitive-social invariance

 General applicability and validity of the model

 Generate new theories and hypotheses

 Reduce the need for costly (or impossible) human experiments

H

Simulation Examples

Questions?

Summary

1. Representation

1. Bottom-Level Representation

2. Top-Level Representation

2. Learning

1. Bottom-Level Learning

2. Top-Level Rule Learning

3. Level Integration

4. Working Memory

5. Simulation Examples

6. Summary

Summary

 ACS Bottom level: implicit representation

 Implemented by

 e.g., backpropagation networks

 Bottom-level learning modes:

• Q-learning

• Simplified Q-learning

• Etc.

Summary

 ACS Top level: explicit representation

 Rules: “condition chunk node action chunk node”

 Types of top-level rules:

• Rule extraction and refinement (RER)

• Independent Rule Learning (IRL)

• Fixed Rules (FR)

Summary

 Level Integration

 Stochastic Selection

• Level is chosen probabilistically

 Combination

• Bottom-up rectification

• Bottom-level outcome rectified at the top level

• Top-down guidance

• Top-level outcome assists action decision-making at the bottom level

o Both may boil down to weighted-sum in the simplest case

Summary

 Working Memory

 Involves:

• Action-directed encoding of information (as opposed to automatic
encoding)

• Gradual fading of information (using BLA)

• Action-directed re-encoding (“refreshing”) of information

• Limited storage capacity

 Working memory is also used to transmit information between the
action-centered and non-action-centered subsystems.

H

Summary

Thank You

Questions?

