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Representation 

Action Decision making process: 
1. Observe the current state. 

2. Compute in the bottom level the “value” of each of the possible actions in the 
current state (e.g., Q-values). E.g., stochastically choose one action. 

3. Find out all the possible actions at the top level, based on the current state 
information and the existing rules in place at the top level. E.g., stochastically 
choose one action. 

4. Choose an appropriate action by stochastically selecting or combining the 
outcomes of the top level and the bottom level. 

5. Perform the selected action and observe the next state along with any feedback 
(i.e. reward/reinforcement). 

6. Update the bottom level in accordance with, e.g., reinforcement learning (e.g., Q-
learning, implemented with a backpropogation neural network). 

7. Update the top level using an appropriate learning algorithm (e.g., for constructing, 
refining, or deleting explicit rules). 

8. Go back to step 1. 
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Representation 

 Bottom Level 

 Implicit knowledge is: 

 Less accessible 

 Reactive (as opposed to, e.g., explicit planning); fast decision making 

 Inaccessible nature of implicit (tacit) knowledge (Reber, 1989; Sun, 
2002) may be captured by distributed representations  

  a theoretical interpretation (amply argued for before; see Sun, 
1994, 2002) 

 E.g., Backpropagation Neural Networks: 

 Representational units (in, e.g., hidden layers) are capable of accomplishing 
tasks but are generally not individually meaningful --- renders distributed 
representation less accessible. 



Representation 

 At the bottom level, Implicit Decision Networks (IDNs), 
implemented with Backpropagation neural networks 

 Three types of inputs: 

  Sensory Input (visual, auditory, …., etc.) 

  Working Memory Items 

  Current Goal (an item from the Goal Structure) 

 represented as dimension-value pairs:  

 (dim1, val1) (dim2, val2) … (dimn, valn) 

 Each pair corresponds to one input node of the network 

 



Representation 

 Actions are represented as nodes on the output layer. 

 Three types of actions: 

o  Working Memory Actions 

o  Goal Actions 

o  External Actions 

 Each action consists of one or more action dimensions 

 in the form:  

   (dim1, val1) (dim2, val2) … (dimn, valn) 

 Each action may be activated to an extent 

 

 

 



Representation 

 Chunks are collections of dimension/value pairs that represent 
either conditions or actions of rules of the top level. 

 Chunk-idi: (dimi1, vali1) (dimi2, vali2)…(dimini
, valini

) 

e.g., table-1: (size, large) (color, white) (number-of-legs, 4) 

 Each chunk (as a whole) is represented by a node in the top 
level 

 Each dimension/value pair is represented by a node in the 
bottom level.   

  Dual representation: Localist versus distributed representation 



Representation 

 The level of activation for a node (within an Implicit Decision 
Network, i.e., ACS bottom level) is calculated using a sigmoid 
activation function: 
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where xi is the value of input I (to the node), wi is the weight of input i, 
and n is the number of inputs to the node 
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Representation 

 An action is chosen based on a Boltzmann distribution of the 
activations of the output-layer nodes. 

 The probability of selecting a particular action i in the bottom-
level is (in accordance with the Boltzmann distribution): 
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where Ai is the activation of action i and  is the noise (temperature) 
parameter 

 

Rationale: different levels of stochasticity (randonness or temperature) 
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Representation 
 Top Level 

 Explicit Rules: 

o  more accessible 

o   “consciously” applied; “rationally” deduced actions 

o  slower than implicit processes, but also perhaps  more precise 

o  “Condition Action” pairs:  with Condition Chunk,  Action Chunk 

 Rules in the top level come from several sources (more on this later): 

o  Extracted and Refined Rules (RER rules) 

o  Independently Learned Rules (IRL rules) 

o  Fixed Rules (FR rules) 

o               (rationale: different types of learning) 



Representation 

 A top-level rule contains one condition chunk and one 
action chunk (possibly with multiple dimensions) 

o Chunk nodes connected to bottom-level (micro)features 

 Each action chunk is associated with these factors: 

 Rule support and conclusion strength (activation) 

 Base-Level Activation (BLA) 

 Recency-based value (for priming; e.g., used for determining RTs) 

 Utility (U) 

 Measures the usefulness of a rule based on the cost and benefit of 
applying the rule (e.g., used for selecting rules) 

 other numerical measures 



Representation 

 Base-Level Activation (BLA): measures the odds of needing a 
rule based on the history of its use (Anderson, 1993) 

        Can be used to highlight pertinent rules; capture the notion of priming 

 BLA: a recency-based value --- gradually decaying “activation”: 
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where tl is the ith use of rule j and iBj is the initial value.  
By default c = 2, d = 0.5 
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Representation 
 

 The activation of the condition chunk is determined by (when using partial 
match): 

 

 

 

 

 From the activation of the condition chunk node, the support for rule k is 
computed (used for rule selection): 

 

 

where k indicates rule k at the top level, Sr
k is the support for rule k, Sc

ck is the strength of condition 
chunk ck (representing the condition of rule k), and Wr

k is the weight of the rule k (where the 
default is 1). 

 The strength of the conclusion chunk node: combining multiple measures of rule 
support for the same conclusion chunk node, using max (for level combination) 
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where Ai is the activation of the ith dimension of chunk c and Wi = 1/n (by 
default), where n is the number of dimensions in chunk ck 
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Representation 
 Rule selection at the top level: 

  based on a Boltzmann distribution of the rule support 
values, or the utility values of the rules (which may be set to a 
constant if not needed) 

 

 Utility may be calculated using the following equation: 
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where  is a scaling factor balancing measurements of benefits 
and costs 
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Representation* 

 Benefit: 

 

 

 

 Cost: 

benefit j 
c7  PM( j)

c8  PM( j) NM( j)

   

cost j =
execution time of rule j

average execution time of rules

where PM(j) = number of positive rule matches and NM(j) = 
number of negative rule matches. By default c7 = 1, c8 = 2 

where values need to be estimated (domain-specific) 

Q 



Representation 

 

 

Questions? 



Learning 

1. Representation in the ACS 

1. Bottom-Level Representation 

2. Top-Level Representation 

2. Learning in the ACS 
1. Bottom-Level Learning 

2. Top-Level Rule Learning 

3. Level Integration 

4. Working Memory 

5. Simulation Examples 

6. Summary 



Learning 

 Bottom-Level Learning 

 uses numerical algorithms to perform gradual error correction within the 
bottom level (IDN’s) 

 Three learning methods: 

o Q-Learning (reinforcement learning) 

o Simplified Q-Learning 

o Standard Backpropagation (supervised learning) 

 

 Top-Level Rule Learning 

 Three rule learning methods: 

o  Bottom-up rule extraction and refinement (RER) 

o  Independent Rule Learning (IRL) 

o  Fixed Rule (FR) 
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Learning 

 Standard Backpropagation (for three-layer network) 

 Calculate error in the output layer using: 

 

 

 
 

 Output weights are updated as follows: 

 



erri  target(x,ai)Q(x,ai)

where target(x,ai) is the target output for node i and Q(x,ai) is the 
actual output of node i 



w ji x ji j
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where xji is the ith input of output unit j and oj is the output of unit j 
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Learning* 

 Standard Backpropagation (cont.) 

 Weights are updated in the hidden layer by: 
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where xji is the ith input to hidden unit j,  is the learning rate, 
oj is the output of hidden unit j, and k denotes all of the units 
downstream (in the output layer) of hidden unit j 

Q 



Learning 

 Q-Learning 

 A reinforcement learning method (as opposed to supervised learning) 

 Updating based on the temporal difference in evaluating the current 
state and the current action chosen 

 May be implemented using backpropagation, except error is calculated 
in the output layer using: 



erri  0                             otherwise

re(y)Q(x,ai )   if ai a
where r +  e(y) estimates the (discounted) total reinforcement 
to be received from the current point on. 

Q 



 Learning 

 Q-Learning (cont.) 

 Q(x,a) approaches: 

 

 

 

 

 e(y) is calculated using: 

 

Q 
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where  is a discount factor, ai is an action that can be performed at step 
i, and ri is the reinforcement received at step i 

)),((max)( byQye b

where y is the new state resulting from action a in state x 



Learning 

 Simplified Q-Learning 

 Basic form (atemporal) reinforcement learning 

 Temporal credit assignment is not involved 

 Most useful when immediate feedback is available and sufficient 

 Error is calculated in the output layer using: 

 



erri  0                    otherwise

rQ(x,ai )     if ai a

Q 



Learning 

 Context for Reinforcement Learning --- Two loops: 

 

 Sensory Input → Action (e.g., by implicit reactive routines 
within the ACS, formed by, e.g., reinforcement learning) 

 Sensory Input → MS → MCS → Reinforcement signal (to be 
used in the ACS for reinforcement learning) 

 

 In addition to other loops 



Learning 
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Learning 

 Top Level Learning 

 Bottom-up learning --- rule extraction and refinement (RER) 

 “Condition → Action” pairs are extracted from the bottom level and refined 
(generalized, specialized, or deleted) as necessary 

 Independent rule learning (IRL) 

 Rules of various forms are independently generated (either randomly or in a 
domain-specific order) and then refined or deleted as needed 

 Fixed Rules 

 Rules are obtained from prior experiences, or provided from external 
sources 



Learning 
 Rule extraction and refinement (RER) 

 Basic idea of the algorithm: 

 If an action decided by the bottom level is successful (according to a 
criterion), then a rule is constructed and added to the top level 

 In subsequent interactions with the world, the rule is refined by considering 
the outcome of applying the rule: 

• If the outcome is successful, the condition of the rule may be 
generalized to make it more universal 

• If the outcome is not successful, then the condition of the rule should 
be made more specific 



Learning 

 Rule extraction 

 Check the current criterion for rule extraction 

 If the result is successful according to the current rule extraction criterion, 
and there is no rule matching the current state and action, then perform 
extraction of a new rule 

• “Condition → Action” 

• Add the extracted rule to the action rule store at the top level 



Learning 

 Rule extraction (cont.) 

 A rule is extracted based on a (domain-specific) positivity criterion 

           e.g.,  

 This determines whether or not action a is reasonably good (Sun and 
Peterson, 1997, 1998) 

 In cases where feedback is immediately available (and there is no 
temporal sequences), the positivity criterion can be simplified  

          e.g.,  r > thresholdRER 

RER
b

axQrbyQ threshold ),()),((max

Q 



Learning 

 Refinement 

 Extracted rules (or Independently learned rules) have rule 
statistics that guide rule refinement --- for each rule and its 
variations: 

• Positive Match PM:=PM+1 when the positivity criterion is met 

• Negative Match NM:=NM+1 when the positivity criterion is not met  

• At the end of each episode (e.g., a game, an action sequence, etc.), 
PM and NM are discounted by multiplying them by .9 



Learning 

 Refinement (cont.) 

 Based on PM and NM, an information gain measure (IG) may be 
calculated: 

 

 

 

 

 

 Essentially compares the percentages of positive matches under 
different conditions: A vs. B 

 If A can improve the percentage to a certain degree over B, then A is 
considered better than B 



IG(A,B)  log2(
PMa (A) c1

PMa (A) NMa (A) c2

) log2(
PMa (B) c1

PMa (A) NMa (A) c2

)

where A and B are two different rule conditions that lead to the same action 
a, c1 and c2 are constants (1 and 2 respectively by default) 

Q 



Learning 

 Generalization 

 Check the current criterion for Generalization 

• If the result is successful according to the current generalization 
criterion, then generalize the rules matching the current state and 
action 

• Remove these rules from the rule store 

• Add the generalized versions of these rules to the rule store (at the 
top level) 



Learning 

 Generalization (cont.) 

 A rule can be generalized using the information gain measure: 

• If IG(C, all) > threshold1 and maxc’ IG(C’, C)  0 , then set  

argmaxC’ (IG (C’, C)) as the new (generalized) condition of the rule 

 

 

• Reset all the rule statistics 

 

• Other possibilities: one-or-all, etc. 

 

where C is the current condition of the rule, all is the match-all rule, 
and C’ is a modified condition such that C’ = “C plus one value” 

 



Learning 

 Specialization 

 Check the current criterion for Specialization 

• If the result is unsuccessful according to the current specialization 
criterion then revise all the rules matching the current state and 
action 

• Remove the rules from the rule store 

• Add the revised (specialized) rules into the rule store (at the 
top level) 



Learning 

 Specialization (cont.) 
 A rule can be specialized using the information gain measure: 

• If IG(C,all) < threshold2 and maxC’IG(C’,C) > 0, then set  

            argmaxC’ (IG (C’, C)) as the new (specialized) condition of the rule 

where C is the current state condition of the rule, all is the match-all 
rule, C’ is a modified condition such that C’ = “C minus one value” 

• If any dimension in C has no value left after specialization then the rule is 
deleted 

• Reset all the rule statistics 



Learning 

 Example 

SRT Task (Curran and Keele, 1993) 

• Repeating sequence of X marks each in 1 of 4 possible positions; press 
corresponding buttons 

• Subjects learn to predict new positions on the basis of preceding positions 

Learn the sequential relations embedded in the sequence  

Leads to faster responding 



Learning 

 Example (cont.): modeling 

 Learning (by iterative weight updating) in the bottom level promotes 
implicit knowledge formation (embedded in weights) 

 Resulting weights specify a function relating previous positions (input) 
to current position (output) 

 Acquired sequential knowledge at the bottom level can lead to the 
extraction of explicit knowledge at the top level 



Learning 

 Example (cont.) 

 The initial extraction step creates a rule that corresponds to the current 
input and output (as determined by the bottom level) 

 Generalization adds more possible values to the condition of the rule so 
that the rule may have more chances of matching new input 

 Specialization adds constraints to the rule (by removing possible 
matching values) to make the rule less likely to match new input 

 Applicability of these steps determined by the IG measure (discussed 
before) 



Learning 

 Example (cont.) 

 Suppose sequence is:  

 1 2 3 2 3 4 

 Initially extracted rule may be:  

 1 2 3 2 3 --> 4 

 Generalization may lead to a simplified rule: 

 * 2 3 2 3 --> 4 (where * stands for “don’t care”) 

 * 2 * 2 3 --> 4  

and so on 

 Continued generalizations and specializations are likely to happen, as 
determined by the IG measure (which is in turn determined by the 
performance of the rule) 

 Incorrect generalization may occur (e.g., 2 3  4), which may then be 
revised 



Learning (RER) 
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Learning 

 Independent Rule Learning (IRL) 

 A variation of rule extraction and refinement 

 In which, the bottom level is not used for initial rule extraction. 

 Rules are generated either randomly or through a domain-specific order 

 Then these rules are tested through experience using the IG measure 

 If the rule IG measure is below a threshold, then the rule is refined or 
deleted. 

 



Learning 

 Independent Rule Learning (cont.) 

 Positivity criterion can be based on information from the bottom level 
(similar to RER): 

                e.g.,  

 

 

 Positivity criterion can also be based on information from external 
sources (such as immediate feedback/reinforcement) 

IRL
b

thresholdaxQrbyQ  ),()),((max

Q 



Learning 

 Independent Rule Learning (cont.) 

 One possible information gain measure for IRL rule testing is: 

 If IG(C, random) < threshold3  then delete the rule 

 

 This is equivalent to: 

 

 

 

 Specialization/generalization are also possible (similar to RER); assuming 
the most general (match-all) condition to begin with. 

 



If IG(C)  log2(
PMa (C) c5

PM(C) NM(C) c6

)  threshold4 then delete rule C

Q 



Learning 

 Fixed Rules (FR) 

 Externally given or acquired from prior experiences (or by pre-
endowment)  

 Enables top-down learning (assimilation) 

 Rules in the top level may guide implicit learning in the bottom level. 

 Can represent more than just propositional structures 

 More complex interaction, and more complex action sequences between 
conditions and actions, akin to: 

• Schemas (Arbib, 1980; Dretcher, 1989) 

• Abstract behaviors (Mataric, 2001) 

Q 
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Level Integration 

 Several level integration methods: 

 Stochastic Selection 

 Combination 

 Bottom-up Rectification 

 Top-down Guidance 

 Assumes one bottom-level network and one top-level rule 
group 

 Details on coordinating multiple bottom-level networks and 
top-level rule groups can be found in the technical descriptions 
(Sun, 2003) 

Q 



Level Integration 

 Stochastic Selection 

At each step, the probability of using any given rule set is: 

PRER  = probability of using RER rule set 

PIRL  = probability of using IRL rule set 

PFR  = probability of using FR rule set 

The probability of using the bottom level is: 

PBL  = 1 - PRER - PIRL - PFR 

Q 



Level Integration 

 Selection probabilities may be: 

 Fixed (pre-set/constant; e.g. set by the Meta-Cognitive Subsystem) 

 Variable (see later) 

 Deterministic selection of either the top level or the bottom 
level: 

 is a special case of stochastic selection --- probability=1/0 

 Selection probabilities in this case may be chosen by the 
Meta-Cognitive Subsystem (discussed later) 



Level Integration 

 Variable selection probabilities: may be calculated using 
“probability matching”,  as follows: 



PBL 
BL  srBL



PRER 
RER  srRER



PIRL 
IRL  srIRL



PFR 
FR  srFR



where sr stands for success rate,  is a weighting parameter, and 
 = BL x srBL+ RER  x srRER + IRL x srIRL + FR x srFR  

Q 



Level Integration 

 Combination 

 Combining activations from the top level with activations (Q-values) in 
the bottom level, in some way 

 Top-down guidance vs. bottom-up rectification 

Positive conclusions reached in the top level can add to action 
recommendations in the bottom level; Negative conclusions reached in 
the top level can veto actions in the bottom level 

Or, bottom-level selections are verified by the top-level rules 

 Then selecting an action based on the combined values using a 
Boltzmann distribution 

  

H 



Level Integration 

 Bottom-up Rectification: 

 Bottom-level outcome is sent to the top level 

 The top level rectifies and utilizes outcomes from the 
bottom level with the knowledge in the top level 

 Likely to happen in reasoning situations, where final 
outcomes are explicit (Nisbett and Wilson, 1977) 

 

 (One possibility: weighted sum combination) 

H 



Level Integration 

 Top-down Guidance: 

 Top-level outcome is sent down to the bottom level 

 The bottom level utilizes the outcome of the top level, along 
with its own knowledge, in making action decisions 

 Most likely happens in skill learning and skilled performance 

 

 (One possibility: weighted sum combination) 

 

H 



Overview 

Action Decision making process: 
1. Observe the current state. 

2. Compute in the bottom level the “value” of each of the possible actions in the 
current state. E.g., stochastically choose one action. 

3. Find out all the possible actions at the top level, based on the current state 
information and the existing rules in place at the top level. E.g., stochastically 
choose one rule and hence one action. 

4. Choose an appropriate action by stochastically selecting or combining the 
outcomes of the top level and the bottom level. 

5. Perform the selected action and observe the next state along with any feedback 
(i.e. reward/reinforcement). 

6. Update the bottom level in accordance with, e.g., reinforcement learning (e.g., Q-
learning, implemented with a backpropagation neural network). 

7. Update the top level using an appropriate learning algorithm (e.g., for constructing, 
refining, and deleting explicit rules). 

8. Go back to step 1. 
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Working Memory 

 For storing information on a temporary basis 

 Facilitating subsequent action decision-making and/or reasoning 

 Working memory involves (cf. Baddelay, 1995): 

 Action-directed (“deliberate”) encoding of information 

(as opposed to automatic encoding) 

 Gradual fading of information 

 Action-directed re-encoding (“refreshing”) of information 

 Limited storage capacity 

 Multiple stores 

 

H 



Working Memory 

 May be divided into multiple sensory related sections: 

 Visuospatial information 

 Auditory/verbal information 

 Other types of information 

 Each section consists of a certain number of slots 

 Each can hold the content of a chunk 

 Capacity is limited 

H 



Working Memory 

 Working memory actions may: 

 Add items into working memory 

Set i: the content of a chunk is stored in working memory slot i 

Set {i}: the content of multiple chunks are stored in multiple slots in working 
memory 

 Remove items from working memory 

Reset i: the content of the ith working memory slot is removed 

Reset-all-WM: removes all items from working memory 

Do-nothing 

 Working Memory actions can be performed by either or both levels of the 
ACS 

H 



Working Memory 

 Base-level activation (BLA) for WM: 

 Determines how long past information should be kept around (when 
there is no reset action) 

 Recency-based: 



Bi
w  iBi

w  c  tl
d

l1

n



where i indicates an item in working memory, l indicates the lth 
setting of that item, tl is the time since the lth setting, and iB is the 
initial value of B (c and d are constants) 

H 



Working Memory 

 If the base-level activation of working memory item i is above a threshold: 

 

 

   then the working memory item i is used as input to the bottom level and the 
top level (otherwise invisible) 



Bi
w  thresholdWM

H 



Working Memory and NACS 

 Working memory may be used to transmit information 
between the Action-Centered (ACS) and the Non-Action-
Centered (NACS) subsystem (discussed later) 

 Working memory is minimally necessary for storing information 
from the non-action-centered subsystem,  

 Must be able to retrieve and hold conclusions from reasoning so it can be 
used for action decision-making. 

 Must be able to extract additional declarative information related to the 
current state and action (including related past episodes, which is also 
stored in the NACS) 

  

H 



Working Memory 
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Simulation Examples 

 Serial reaction time task (Curran and Keele, 1993) 

 A sequence of X marks 

 Two phases: 

• Single task learning 

• Dual task transfer 

 Three groups of subjects: 

• Less aware 

• More aware 

• Intentional 

H 



Simulation Examples 

3 (intentional vs. more aware vs. less aware) X 2 (sequential vs. random) ANOVA: 

 significant difference across groups during the STL phase 

 No difference across groups during the DTT phase 

H 



Simulation Examples 

 Model Setup 

 Simplified Q-backpropagation learning at the bottom level 

 7x6 input units (both primary and secondary tasks) and 5 output units 

 RER rule learning at the top level 

 Three groups: 

• Less aware: use higher rule learning thresholds 

• More aware: use lower rule learning thresholds 

• Intentional: code given knowledge in the top level 

 Linear transformation: RTi = a ⨯ ei + b 

 ANOVA confirmed the data pattern 

H 



Simulation Examples 

Plot from Cleeremans (1993) Simulation 

Human data from Curran & Keele 

Plot from CLARION Simulation 
H H 



Simulation Examples 

 Letter counting task (Rabinowitz and Goldberg, 1995) 

 Experiment 1 

• letter1 + number = letter2 

• The consistent group: 

• 36 blocks of training (the same 12 addition problems in each) 

• The varied group: 

• 6 blocks of training (the same 72 addition problems in each) 

• Transfer phase: 

• 12 new addition problems (repeated 3 times) 



Simulation Examples 

 Letter counting task (cont.) 

 Experiment 2 

• Same training 

• Transfer: 

• 12 subtraction problems (repeated 3 times) 

• letter1 - number = letter2 (reverse of addition problems) 



Simulation Examples 

 Experiment 1  Experiment 2 



Simulation Examples 

 Model Setup 

 Simplified Q-backpropagation learning in the bottom level ACS (IDNs) 

 36 input units, 26 output units, and 30 hidden units 

 Fixed Rules 

• If goal=addition-counting, start-letter=x, number=y, then starting with x, 
repeat y times counting up 

• If goal=subtraction-counting, start-letter=x, number=y, then starting with x, 
repeat y times counting down 

Q 



Simulation Examples 

 Model Setup (cont.) 

 Rule utility (used for rule selection) and rule base-level activation (used 
for response time) 

 Response Time: 

   

DTTL = y ´ tcounting + c ´
1

BLA(rule)

DTBL = constant

Q 



Simulation Examples 
 Experiment 1: CLARION vs. ACT-R 

Rabinowitz and Goldberg 
Experimental Results 

CLARION Simulation Results ACT-R Simulation Results 



Simulation Examples 
 Experiment 2: CLARION vs. ACT-R (cont.) 

CLARION Simulation Results ACT-R Simulation Results 

Rabinowitz and Goldberg 
Experimental Results 



Simulation Examples 

Learning curve of Rabinowitz and 
Goldberg (1995) 

Learning curve during the simulation 



Simulation Examples 

Level selection probability of the 
consistent group during training in the 
simulation 

Level selection probability of the varied 
group during training in the simulation 



Simulation Examples 
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Simulation Examples 

 Minefield navigation task (Sun et al 2001) 
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Simulation Examples 

 Four training conditions: 

 Standard training condition 

 Verbalization condition 

 Dual-task condition 

 Transfer conditions 

H 



Simulation Examples 

 Model Setup 

 The effect of the dual task is captured by reduced top-level activities 
(through raised rule learning thresholds) 

 The effect of verbalization stems from heightened rule learning activities 
(through lowered rule learning thresholds) 

 The model starts with no more a priori knowledge about the task than a 
typical human subject 

 10 human subjects were compared to 10 model subjects in each 
experiment 
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Simulation Examples 

 The effect of the dual task condition on learning: 

 

 

 

 

 

 

 2 (human vs. model) X 2 (single vs. dual task) ANOVA indicated a significant 
main effect for single vs. dual task (p < .01), but no interaction between 
groups and task types 
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Simulation Examples 

 The effect of the dual task condition on transfer 

 

 

 

 

 

 

 2 (human vs. model) X 2 (single vs. dual task) ANOVA revealed a significant 
main effect of single vs. dual task (p < .05), and no interaction between 
groups and task types 
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Simulation Examples 

 The effect of verbalization 

 

 

 

 

 
 

 4 (days) X 2 (human vs. model) X 2 (verbalization vs. Standard) ANOVA indicated that 
both human and model subjects exhibited a significant increase in performance due 
to verbalization (p < .01), but that the difference associated with verbalization for the 
two groups was not significant 
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Simulation Examples 

 Academic science task (Naveh and Sun, 2006) --- Lotka’s law 

 Number of authors contributing a certain number of articles follows 
an inverse power law: a Zipf distribution (Lotka, 1926)  

 Simon (1957): a simple stochastic process for approximating Lotka’s 
law  

 The probability that a paper will be published by an author who has 
published i articles is a/ik 

 Gilbert (1997) simulated Lotka’s law 

 Assumed that authors were non-cognitive and interchangeable; it neglected 
a host of cognitive phenomena that characterized scientific inquiry (e.g., 
learning, creativity, evolution of field expertise, etc.)  
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Simulation Examples 

 Setup for simulating academic publishing data: 

o Multiple agents: with limited academic life spans (in part, depending on 
productivity) 

o Each paper: based on combining past ideas (from past papers), with 
local optimization 

o Action sequences in generating papers: decided based on implicit and 
explicit knowledge, with learning from experiences 

o Evaluated based on a set of criteria (i.e., refereed) 
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Simulation Examples* 

 The CLARION simulation data for the two journals matched the 
real-world data well  

 The CLARION simulation data for the two journals could be fit 
to the power curve f(i) = a/ik   (as in Simon’s, but not built in) 
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Simulation Examples 

 The number of papers per author reflected cognitive processes 
of authors, as opposed to being based on auxiliary assumptions 

 Emergent, not a result of direct attempts to match the human 
data 

 More distance between mechanisms and outcomes, to come 
up with deeper explanations  
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Simulation Examples 

 Varying cognitive parameters: 

 Most prolific under a moderately high temperature setting: 

 

 

 

 

 

 Serendipity in scientific discovery! 
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Simulation Examples 

 Varying cognitive parameters: 

 Generate different communities producing different numbers of 
papers, by varying cognitive parameters  

 Power curves are obtained under different cognitive parameter 
settings  

 

H 



Simulation Examples 

 Varying cognitive parameters: 

 Cognitive-social invariance  

 General applicability and validity of the model  

 Generate new theories and hypotheses  

 Reduce the need for costly (or impossible) human experiments  
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Summary 

1. Representation 

1. Bottom-Level Representation 

2. Top-Level Representation 

2. Learning 

1. Bottom-Level Learning 

2. Top-Level Rule Learning 

3. Level Integration 

4. Working Memory 

5. Simulation Examples 

6. Summary 



Summary 

 ACS Bottom level: implicit representation 

 Implemented by  

        e.g., backpropagation networks 

 Bottom-level learning modes: 

• Q-learning 

• Simplified Q-learning 

• Etc. 

 



Summary 

 ACS Top level: explicit representation 

 Rules: “condition chunk node   action chunk node”  

 Types of top-level rules: 

• Rule extraction and refinement (RER) 

• Independent Rule Learning (IRL) 

• Fixed Rules (FR) 



Summary 

 Level Integration 

 Stochastic Selection 

• Level is chosen probabilistically 

 Combination 

• Bottom-up rectification 

•    Bottom-level outcome rectified at the top level 

• Top-down guidance 

•    Top-level outcome assists action decision-making at the bottom level 

 

o Both may boil down to weighted-sum in the simplest case 

 



Summary 

 Working Memory 

 Involves: 

• Action-directed encoding of information (as opposed to automatic 
encoding) 

• Gradual fading of information (using BLA) 

• Action-directed re-encoding (“refreshing”) of information 

• Limited storage capacity 

 Working memory is also used to transmit information between the 
action-centered and non-action-centered subsystems. 
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