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1 ABSTRACT. 
This review is part of the final project for IA006 

discipline at UNICAMP/FEEC/DCA, Prof. Ricardo 
Gudwin, http://faculty.dca.fee.unicamp.br/gudwin/courses/IA006 
and shows the relevance of memory and learning 
capabilities as basis for cognitive architectures design 
and more refined features. The project implements a 
basic episodic memory on LIDA/WS3d scenery - 
therefore, some high-level episodic memory concepts 
and mechanisms are reviewed. The presented concepts 
focus on the studied architectures: SOAR, CLARION 
and LIDA.  

Different disciplines such as psychology and 
neuroscience have been examining episodic memory, 
also referred to as declarative memory, for more than 
three decades. Now, engineering and computer science 
are developing an increasing interest in episodic 
memory for artificial systems. For robots and modern 
machines, it seems to be essential to collect 
autobiographical memories to improve action planning 
based on past experiences.  

 
 

2 INTRODUCTION. 
Cognitive architectures have been developed in 

order to model human performance in several 
situations of modern life. Adaptive behavior, dynamic 
behavior, flexible behavior, development, evolution, 
learning, knowledge integration, vast knowledge base, 
natural language, real-time performance and brain 
realization are some criteria for cognitive systems 
evaluation, proposed by Allen Newell, 1990 [1].  After 
that, some other evaluation criteria were designed, 
considering new concepts, refinements and 
architectures.  

Two important key design properties that 
represent cognitive architectures development are 
memory and learning. Several types of memories are 
designed and optimized to their main task: repository 
for background knowledge about the world and 
oneself, episodic memory of events and activities, 
working memory to program actions, learning and 
organize knowledge.  

Memory and Learning are capabilities that form 
the basic layer for cognition aspects of any 
architecture, above which more specialized functions 
and intelligent capabilities are built, such as reasoning, 
planning, flexibility, self-regulation, among others. 

Organization of memory is basically derived from 
knowledge representation schemes.  

Cognitive architectures may be classified into 
models, based on their learning and memory design: 
symbolic, emergent and hybrid. 

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Symbolic architectures focus on information 

processing using high-level symbols or declarative 
knowledge, in a top-down analytic approach. 
Generally, a physical symbol system has the ability to 
input, output, store and alter symbolic entities, and act 
in order to reach its goals. The information flows from 
sensory inputs through working memory that access 
semantic memory by its executive functions for 
knowledge retrieval. Graph-based representations are 
typically encoded as directed graph structure 
comprising nodes for symbolic entities, their attributes 
and edges for relationships among them. SOAR (State, 
Operator And Result) is a classical example of expert 
rule-based cognitive architecture – it stores knowledge 
in form of production rules, arranged in terms of 
operations that act in the problem space.    

 Emergent architectures are inspired by 
connectionist ideas [3] - low-level activation signals 
flowing through a network consisting of numerous 
processing units, a bottom-up process relaying on the 
emergent self-organizing and associative properties. 
Processing elements form network nodes that interact 
with each other in a specific way changing their 
internal states and revealing interesting emergent 
properties. The Multi-Layer Perception (MLP) and 
other neural networks based on delocalized transfer 
functions process in a distributed and global way. 



Hybrid architectures result from combining the 
symbolic and emergent paradigms. Symbolic 
architectures are able to process information and 
realize high-level cognitive functions, such as planning 
and deliberative reasoning. However, the major issues 
in this approach are the formulation of symbolic 
entities from low-level information, as well as the 
handling of a large amount of information and 
uncertainty. Emergent architectures are better suited for 
capturing the context and handling many pieces of low-
level information simultaneously. Therefore, each 
architecture address the limitations of the other, 
allowing creation of a complete new architecture that 
covers all levels of processing – from stimuli to higher-
level cognition. CLARION (The Connectionist 
Learning Adaptive Rule Induction ON-Line) is a hybrid 
architecture that incorporates a distinction between 
explicit (symbolic) and implicit (sub-symbolic) 
processes and captures the interactions between them. 
The design objective is to develop artificial agents for 
certain cognitive task domains and to understand 
human learning and reasoning processes in similar 
domains. CLARION architecture contains four 
memory modules, each comprising a dual explicit-
implicit representation: action-centered subsystem 
(ACS), non-action-centered subsystem (NCS), 
motivational subsystem (MS) and metacognitive 
subsystem (MCS). Essentially, the ACS module serves 
to regulate the agent’s actions, while NCS maintain the 
general system knowledge (explicit and implicity). MS 
provides a motivation/impetus for perception, action 
and cognition, while MCS monitors, directs and alters 
operations of the other three modules. CLARION also 
employs different learning methods for each level of 
knowledge. Learning of implicit knowledge is 
achieved using reinforcement learning methods such as 
Q-learning or supervised methods such as standard 
back-propagation, both of which can be implemented 
using an MLP network. The implicit knowledge 
acquired at the bottom level is used to elaborate the 
explicit knowledge at the top level via bottom-up 
learning. Top-down learning may also be achieved by 
rules at the top level and allowing the bottom-level to 
accumulate knowledge by “observing” actions guided 
by these rules – the system gradually becomes more 
dependent on the bottom level. LIDA (The Learning 
Intelligent Distribution Agent) is a conceptual and 
computational framework for intelligent, autonomous, 
“conscious” software agent that implements ideas of 
Global Workspace theory [4]. The architecture 
employs a partly symbolic and partly connectionist 
memory organization, with all symbols grounded in the 
physical world, interacted by distinct modules such as 
for perception, working memory, emotions, semantic 
memory, episodic memory, action selection, 
expectation and automatization (learning procedural 
tasks from experience), constraint satisfaction, 
deliberation, negotiation, problem solving, 
metacognition and conscious-like behavior. Most 
operations are done by codlets implementing the 
unconscious processors, specialized networks, of the 
Global Workspace theory. Episodic learning involves 
memorize specific events (what, where and when) 
resulted from events taken from the content of 
“consciousness” being encoded in the transient 

Episodic Memory. Procedural learning concerns 
learning of new actions and actions sequences to 
accomplish new tasks. There is no doubt that this 
architecture may explain and simulate many features of 
mind but it will always need more development and 
refinement.  

As already mentioned, learning and memory 
capabilities are the bases for all architectures. This 
work intends to do a review about Episodic Memories 
structures and apply some of the concepts to a 
particular case – LIDA implementation.  

 
 
2.1 LEARNING: 
This report is about Episodic Memory and its 

implementation for a particular application using LIDA 
platform. Therefore, aspects regarding learning process 
will be introduced in another opportunity 

 
2.2 EPISODIC MEMORY: 
Engelkamp [5] propose to distinguish memory 

systems based on the type of stored information (e.g. 
episodic-semantic, verbal-nonverbal-imaginal), the 
type of processes involved (e.g. declarative-procedural, 
implicit-explicit) and such memory systems based on 
the length of time that information is retained (e.g. 
short–term-long–term). The study of episodic memory 
began in the early 1970s when the psychologist Endel 
Tulving made a first distinction between episodic and 
semantic memory [6]. At that time episodic memory 
(EM) was defined in terms of materials and tasks. 
Tulving specified episodic memory as your 
experiences of certain, spatio-temporal definite 
episodes (e.g. your last business trip) and our general 
knowledge (language translations, facts like “what is a 
pen”) as the semantic memory (SM). However, his 
suggestion that episodic and semantic memory are two 
functionally different memory systems quickly became 
controversial. As a result of the criticism, the episodic 
memory definition was refined and elaborated in terms 
of its main ideas such as self, subjectively sensed time, 
and autonoetic consciousness. Today, episodic 
memory is seen as one of the major neurocognitive 
memory systems [7] that is defined in terms of its 
special functions (what the system does or produces) 
and its properties (how it does that). It shares many 
features with semantic memory, which it grew out of, 
but it also possesses features that semantic memory 
does not have [8]. Episodic memory is oriented 
towards the past in a way in which no other kind of 
memory system is. It is the only memory system that 
allows people to consciously re-experience their past. It 
has a special and unique relationship with time [9]. 

The brain uses vast amounts of memory to create 
a model of the world. Everything a person knows and 
has learned is stored in this model. The brain uses this 
memory-based model to make continuous predictions 
of future events[10]. If those predictions are disproved, 
the brain learns (e.g. by novelty detection [11]), and 
adjusts its memories according to the new data. The 
memory seems to be organized in a hierarchy, each 
level being responsible for learning a small part of the 
overall model. Kanerva [12] proposed a sparse 
distributed memory (SDM) model that offers many of 



the characteristics that a human memory possesses. He 
also developed a mathematical model for this theory. 

Reviewing characteristics of episodic memory in 
humans it can be listed some inspiring: 

Autonoetic: Remembering episodic memory is 
characterised by a state of awareness unlike that in 
semantic memory that is noetic. When one recollects 
an event autonoetically, one re-experiences aspects of a 
past experience. Re-experiencing of an already learnt 
episode is not necessary. 

Autobiographical: A person remembers an 
episode from his or her own perspective. There is no 
possibility to change the viewpoint in AI systems. To 
put oneself in someone else’s place is the highest 
achievement of human intelligence. Moreover, there 
are studies proving that autobiographical and episodic 
memory are separate memory systems [13]. 

Variable Duration: The time period that is 
spanned by an episode is not fixed.  

Temporally Indexed: The “rememberer” has a 
sense of the time at which the remembered episode 
occurred. 

Imperfect: Our memory is incomplete and can 
have errors. New sensations are forced to satisfy 
already experienced concepts. 

Primed: Recall occurs more quickly when it is 
primed by repetition, recall of related information, or 
similar states. 

Forgetting: It is still not clear if forgetting is a 
problem of actual information loss in long-term 
memory (LTM), or rather a problem of recall of the 
memory traces. Currently, mechanisms of active 
forgetting are being discussed [14]. 

Level of Activation: Exposure frequency and 
recency affect the speed and probability of recall. The 
level of activation mainly describes the primacy & 
recency effect where the former is based on LTM 
effects and the latter is based on the contents of the 
working memory. 

 
Computationally, mechanisms of episodic 

memory can be used to develop new learning 
algorithms and experience-based prediction systems. 
Agents that do not remember their past are bound to 
repeat both the previous mistakes and the reasoning 
efforts behind them. Thus, using an episodic memory 
helps to save time by remembering solutions to 
previously encountered problems and by anticipating 
undesirable states. In literature several important 
approaches to creating episodic memory in artificial 
systems have been explored. Computational models of 
episodic memory can be divided into two categories: 
abstract and biological.  

 
 

Abstract Models: 
 

Make claims about the “mental algorithms” that 
support recall and recognition judgments, without 
addressing how these algorithms might be 
implemented in the brain.  

SOAR-EM - Nuxoll & Laird extend the CBR 
paradigm by integrating episodic memory with a 
general cognitive architecture and developing task 
independent mechanisms for encoding, storing, and 

retrieving episodes [16]. They extend SOAR, one of 
the major cognitive architectures based on production 
rules [17]. SOAR has two types of knowledge, working 
memory (short-term, declarative) and production rules 
(long-term, procedural) and has been extended with 
episodic memory mechanisms into SOAR-EM. In 
previous articles they propose a Packman-like domain 
to wander around in a limited grid and collect the most 
food-points in the least amount of time. Their goal was 
for the agent to use its episodic memory in place of its 
knowledge about the food-points to aid in selecting the 
direction in which it should move. An activation-based 
matching scheme leads to significantly better results 
than its unbiased match predecessor that was 
developed earlier. As the agent acquires more memory 
items, the eater’s performance continues to improve 
until it performs at a level comparable to the greedy 
eater (that only heads to the best food in its direct 
neighborhood) [18]. The hypotheses of cognitive 
capabilities resulting from this episodic memory are 
discussed and confirmed by implementations in their 
article [16]. 

 
LIDA - The Learning IDA (LIDA) architecture 

incorporates six major artificial intelligence software 
technologies: the copycat architecture, sparse 
distributed memory, pandemonium theory, the schema 
mechanism, the behavior net model, and the sub- 
sumption architecture [19]. LIDA is an extension for 
the Intelligent Distribution Agent (IDA) — which is a 
referred to as “conscious” software agent — by 
perceptual, episodic, and procedural learning 
capabilities. It was created as model of human 
cognition that could be used to suggest possible 
answers to questions about the human mind. The 
authors designed and developed a practical application 
that could act like a human detailer, a person who 
negotiates with sailors about new jobs who are near the 
end of their current tours of duty. A percept in the 
LIDA architecture can be thought of as a set of 
elements of a ontology that are relevant to the stimulus. 
They organize this information into a binary vector, 
where each field of one or more bits represents an 
element of the ontology [19]. A cue (the binary vector) 
will be used to query the content-addressable 
memories, autobiographical memory (ABM) and 
transient episodic memory (TEM). Both are based 
closely on Kanerva’s sparse distributed memory 
(SDM) [20]. A similarity between SDM circuits and 
those of the cerebellar cortex are noted by [12]. 
Unfortunately, in this approach the whole domain must 
be specified within ontology. It is limited to the domain 
of providing new jobs to sailors. 

 
 
 

Biological Models: 
 

Make claims about the computation that support 
recall and recognition judgments, the main difference 
being that they also make specific claims about how 
the brain gives rise to these computations. While the 
former models account for challenging patterns of 
behavioral recall and recognition data from list 
learning paradigms, the brain-model mapping of the 



latter models provides an extra source of constraints on 
the model’s behavior. Even if Norman, Detre & Polyn 
[15] outline a comprehensive overview on 
computational models for episodic memory, only few 
robotic systems exist that make use of such models for 
learning. 

 
 
2.3 ARCHITECTURE AND PATTERNS FOR EM: 
 
 
 
 
2.4 SUCCESSFUL EPISODIC MEMORIES TYPES : 

 
3 IMPLEMENTATION. 
 

At this project there were at least three levels of 
implementation. Firstly the integration between 
WorldServer 3D environment and LIDA cognitive 
platform – the sensors and actuators exported through 
WS3D proxy interface were aligned with LIDA 
“virtual mind” so that creatures at WS3D environment 
passed to be agents controlled by LIDA. 

After that, the environment was configured and 
implemented to correspond to the business 
requirements: “There will be one creature at the arena 
center, turning around, observing events and taking 
note of them – using our basic episodic memory. This 
role is called “Detective”. At the end of execution, the 
Detective will report, according to its observations, 
which jewels were collected, time of event and creature 
ID that collected it (by estimation). Also, it is not 
uncommon the situation of a creature to be stuck when 
passing by an object side. For these cases, detective 
shall be able to send a message to release the creature – 
this event also must be registered and reported.  This 
report will demonstrate how episodic memory can be 
useful.” 

The third level was to design and implement a 
basic episodic memory that could be used by the 
“Detective” and attend to business requirements. 
 

3.1 WORLDSERVER 3D. 
WorldServer3D is a 3D virtual environment 

developed at JAVA platform by Prof. Ricardo 
Gudwin’s Research Group - cogsys. In this virtual 
environment, you can create a set of virtual creatures, 
which are controlled by their sensors and actuators, 
managed through sockets. Recently a proxy interface 
was provided, which facilitates utilization. 

The main purpose of this environment is to 
provide a reference to the scientific community for 
analysis and tests of computational minds derived from 
various architectures and implementations. 

The download of the WorldServer3D source code 
and its proxy interface can be done from the computer 
resources page of IA006 discipline: 
http://faculty.dca.fee.unicamp.br/gudwin/courses/IA006/resources 

 
 

 
 

3.2 LIDA – WS3D INTEGRATION. 
 
- LIDA Project creation: 
 
As a first step, it was created a new Java project, 
WorldServerLIDA_Borelli, at NetBeans IDE. After 
that, selecting project properties - library option, all 
LIDA/lib .jar files were added to the Project, including 
lida-framework-v1.2b (LIDA root folder) and 
WS3DProxy.jar that provides communication interface 
to WorldServer3D:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- LIDA configuration files: 
 
The configs folder was created with the following 
LIDA configuration files, as described at the tutorials 
and architecture:  
Agent.xml, LidaFactories.xsd, LidaXMLSchema.xsd, 
factoryData.xml, guiCommands.properties, 
guiPanels.properties and lidaConfig.properties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Based on the previous activities using 
WS3DProxy interface and LIDA exercises, the 
integration was developed. Three packages were 
created:  
- org.detective: this package contains the main class. 
- org.detective.detectors: contains the detection 

classes.  
- org.detective.modules: contains classes related to 

the environment, creatures and sensorial memory.  
 

The class org.detective.modules.Environment 
extends edu.memphis.ccrg.lida.environment.EnvironmentImpl 
that belongs to the LIDA library and represents the 
virtual environment for perception and control. The 
Environment class initialize all creatures and 
environment artifacts at the init() method: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As oriented at the tutorial, the configuration files 

receive the class names for each specific module. The 
Environment class is indicated at the Agent.xml so that 
the LIDA platform can recognize the class that 
initialize the environment and communicate the events: 

 
 

 
 
 

At the same way, detectors, sensory memory and other 
configurations are also declared at this xml file: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The inner class private class BackgroundTask 
extends lida.framework.tasks.FrameworkTaskImpl that 
is responsible for agent operations at the virtual world.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The behavior for common creatures was defined 
according to its leaflet, energy and what is at its front. 
About the detective behavior, it has a detail – it will be 
turning around at the arena center and not eating. Then, 
at its behavior, we implemented Refuel tu be done 
every update. 

 
3.3 THE DETECTIVE ROLE AND BASIC EPISODIC 
MEMORY UTILIZATION. 
 
The figure below illustrates the WS3D arena with 

a creature at the upper left corner and the detective at 
the center. Both cameras are on and detecting. 

 

WorldServer 3D 
communication interface 

Cria e inicializa o mundo 
virtual através da interface 
Proxy. 

One behavior for 
detectives and other for 
common creatures. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

The print below shows the detective camera 
detection. At this stage, it was possible to observe that 
the detective was able to detect the jewels and their 
positions, but not detecting the creature. Detective was 
wrongly detecting itself also. This was happening due 
the WS3D version. 

 
Action: rotate 
Cor Jóia: Red 
thing.getX1(): 761.5099282676305 
thing.getY1(): 101.08824483809612 
thing.getX2(): 773.5099282676305 
thing.getY2(): 113.08824483809612 
Cor Jóia: Green 
thing.getX1(): 299.84325881153563 
thing.getY1(): 36.73652300857365 
thing.getX2(): 311.84325881153563 
thing.getY2(): 48.73652300857365 
Cor Jóia: Yellow 
thing.getX1(): 587.3986882616115 
thing.getY1(): 132.2377171039681 
thing.getX2(): 599.3986882616115 
thing.getY2(): 144.2377171039681 
Cor Jóia: Magenta 
thing.getX1(): 742.5034875886332 
thing.getY1(): 56.80189971321468 
thing.getX2(): 754.5034875886332 
thing.getY2(): 68.80189971321468 
 
After some running, the creature sack the green 

jewel, and the detection pass to be: 
 
Cor Jóia: Red 
thing.getX1(): 761.5099282676305 
thing.getY1(): 101.08824483809612 
thing.getX2(): 773.5099282676305 
thing.getY2(): 113.08824483809612 
Cor Jóia: Yellow 
thing.getX1(): 587.3986882616115 
thing.getY1(): 132.2377171039681 
thing.getX2(): 599.3986882616115 
thing.getY2(): 144.2377171039681 
Cor Jóia: Magenta 
thing.getX1(): 742.5034875886332 
thing.getY1(): 56.80189971321468 
thing.getX2(): 754.5034875886332 
thing.getY2(): 68.80189971321468 
 
 
 

Note that it is perfectly possible the detective to 
observe the missing jewel at that coordinate and 
registry the event and timestamp – this is the 
inspiration for the episodic memory to be dedicated for 
this case. 

 
Self detection: 
Nome Criatura: Creature_1436919018367 
thing.getX1(): 380.0 
thing.getY1(): 380.0 
thing.getX2(): 420.0 
thing.getY2(): 420.0  this is the center position. 

 
 
 
 
 
 
 
 
 
 
 
 
The basic Episodic Memory was implemented 

using 3 Java HashMap classes. The mapEpsdc stores 
all jewel detected by the Detective during one turn. 

The mapEpsdcIN keeps the new ones and 
mapEpsdc is cleared. The mapEpsdcOUT keeps all 
missing jewel that were, therefore, collected by the 
creature: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The report is printed at the console and shows, by the 
Detective perspective which jewel were created, when, 
also, which were collected and when: 

 
 
 
 
 
 
 
 

 



4 CONCLUSIONS. 
The LIDA architecture seems to be very flexible and 
important for cognitive systems implementation. 
It is clear the gain for the application and business in 
cases were episodic memory is implemented. At the 
present case, the Detective is capable, for example, to 
release the creatures that can be stuck. 
The review turn clear the importance of learning and 
memory design to define the capabilities for the 
architecture. 
Next step, as a compromise, this review will be 
complemented with more details about Episodic 
Memories and the new one implemented for LIDA . 
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