
EPISODIC MEMORY ASPECTS
LIDA ARCHITECTURE – WORLDSERVER 3D SCENERY

José Renato Borelli

Faculdade de Engenharia Elétrica e Computação
Universidade Estadual de Campinas

Campinas – São Paulo - Brasil

1 ABSTRACT.
This review is part of the final project for IA006

discipline at UNICAMP/FEEC/DCA, Prof. Ricardo
Gudwin, http://faculty.dca.fee.unicamp.br/gudwin/courses/IA006
and shows the relevance of memory and learning
capabilities as basis for cognitive architectures design
and more refined features. The project implements a
basic episodic memory on LIDA/WS3d scenery -
therefore, some high-level episodic memory concepts
and mechanisms are reviewed. The presented concepts
focus on the studied architectures: SOAR, CLARION
and LIDA.

Different disciplines such as psychology and
neuroscience have been examining episodic memory,
also referred to as declarative memory, for more than
three decades. Now, engineering and computer science
are developing an increasing interest in episodic
memory for artificial systems. For robots and modern
machines, it seems to be essential to collect
autobiographical memories to improve action planning
based on past experiences.

2 INTRODUCTION.
Cognitive architectures have been developed in

order to model human performance in several
situations of modern life. Adaptive behavior, dynamic
behavior, flexible behavior, development, evolution,
learning, knowledge integration, vast knowledge base,
natural language, real-time performance and brain
realization are some criteria for cognitive systems
evaluation, proposed by Allen Newell, 1990 [1]. After
that, some other evaluation criteria were designed,
considering new concepts, refinements and
architectures.

Two important key design properties that
represent cognitive architectures development are
memory and learning. Several types of memories are
designed and optimized to their main task: repository
for background knowledge about the world and
oneself, episodic memory of events and activities,
working memory to program actions, learning and
organize knowledge.

Memory and Learning are capabilities that form
the basic layer for cognition aspects of any
architecture, above which more specialized functions
and intelligent capabilities are built, such as reasoning,
planning, flexibility, self-regulation, among others.

Organization of memory is basically derived from
knowledge representation schemes.

Cognitive architectures may be classified into
models, based on their learning and memory design:
symbolic, emergent and hybrid.

Symbolic architectures focus on information

processing using high-level symbols or declarative
knowledge, in a top-down analytic approach.
Generally, a physical symbol system has the ability to
input, output, store and alter symbolic entities, and act
in order to reach its goals. The information flows from
sensory inputs through working memory that access
semantic memory by its executive functions for
knowledge retrieval. Graph-based representations are
typically encoded as directed graph structure
comprising nodes for symbolic entities, their attributes
and edges for relationships among them. SOAR (State,
Operator And Result) is a classical example of expert
rule-based cognitive architecture – it stores knowledge
in form of production rules, arranged in terms of
operations that act in the problem space.

 Emergent architectures are inspired by
connectionist ideas [3] - low-level activation signals
flowing through a network consisting of numerous
processing units, a bottom-up process relaying on the
emergent self-organizing and associative properties.
Processing elements form network nodes that interact
with each other in a specific way changing their
internal states and revealing interesting emergent
properties. The Multi-Layer Perception (MLP) and
other neural networks based on delocalized transfer
functions process in a distributed and global way.

Hybrid architectures result from combining the
symbolic and emergent paradigms. Symbolic
architectures are able to process information and
realize high-level cognitive functions, such as planning
and deliberative reasoning. However, the major issues
in this approach are the formulation of symbolic
entities from low-level information, as well as the
handling of a large amount of information and
uncertainty. Emergent architectures are better suited for
capturing the context and handling many pieces of low-
level information simultaneously. Therefore, each
architecture address the limitations of the other,
allowing creation of a complete new architecture that
covers all levels of processing – from stimuli to higher-
level cognition. CLARION (The Connectionist
Learning Adaptive Rule Induction ON-Line) is a hybrid
architecture that incorporates a distinction between
explicit (symbolic) and implicit (sub-symbolic)
processes and captures the interactions between them.
The design objective is to develop artificial agents for
certain cognitive task domains and to understand
human learning and reasoning processes in similar
domains. CLARION architecture contains four
memory modules, each comprising a dual explicit-
implicit representation: action-centered subsystem
(ACS), non-action-centered subsystem (NCS),
motivational subsystem (MS) and metacognitive
subsystem (MCS). Essentially, the ACS module serves
to regulate the agent’s actions, while NCS maintain the
general system knowledge (explicit and implicity). MS
provides a motivation/impetus for perception, action
and cognition, while MCS monitors, directs and alters
operations of the other three modules. CLARION also
employs different learning methods for each level of
knowledge. Learning of implicit knowledge is
achieved using reinforcement learning methods such as
Q-learning or supervised methods such as standard
back-propagation, both of which can be implemented
using an MLP network. The implicit knowledge
acquired at the bottom level is used to elaborate the
explicit knowledge at the top level via bottom-up
learning. Top-down learning may also be achieved by
rules at the top level and allowing the bottom-level to
accumulate knowledge by “observing” actions guided
by these rules – the system gradually becomes more
dependent on the bottom level. LIDA (The Learning
Intelligent Distribution Agent) is a conceptual and
computational framework for intelligent, autonomous,
“conscious” software agent that implements ideas of
Global Workspace theory [4]. The architecture
employs a partly symbolic and partly connectionist
memory organization, with all symbols grounded in the
physical world, interacted by distinct modules such as
for perception, working memory, emotions, semantic
memory, episodic memory, action selection,
expectation and automatization (learning procedural
tasks from experience), constraint satisfaction,
deliberation, negotiation, problem solving,
metacognition and conscious-like behavior. Most
operations are done by codlets implementing the
unconscious processors, specialized networks, of the
Global Workspace theory. Episodic learning involves
memorize specific events (what, where and when)
resulted from events taken from the content of
“consciousness” being encoded in the transient

Episodic Memory. Procedural learning concerns
learning of new actions and actions sequences to
accomplish new tasks. There is no doubt that this
architecture may explain and simulate many features of
mind but it will always need more development and
refinement.

As already mentioned, learning and memory
capabilities are the bases for all architectures. This
work intends to do a review about Episodic Memories
structures and apply some of the concepts to a
particular case – LIDA implementation.

2.1 LEARNING:
This report is about Episodic Memory and its

implementation for a particular application using LIDA
platform. Therefore, aspects regarding learning process
will be introduced in another opportunity

2.2 EPISODIC MEMORY:
Engelkamp [5] propose to distinguish memory

systems based on the type of stored information (e.g.
episodic-semantic, verbal-nonverbal-imaginal), the
type of processes involved (e.g. declarative-procedural,
implicit-explicit) and such memory systems based on
the length of time that information is retained (e.g.
short–term-long–term). The study of episodic memory
began in the early 1970s when the psychologist Endel
Tulving made a first distinction between episodic and
semantic memory [6]. At that time episodic memory
(EM) was defined in terms of materials and tasks.
Tulving specified episodic memory as your
experiences of certain, spatio-temporal definite
episodes (e.g. your last business trip) and our general
knowledge (language translations, facts like “what is a
pen”) as the semantic memory (SM). However, his
suggestion that episodic and semantic memory are two
functionally different memory systems quickly became
controversial. As a result of the criticism, the episodic
memory definition was refined and elaborated in terms
of its main ideas such as self, subjectively sensed time,
and autonoetic consciousness. Today, episodic
memory is seen as one of the major neurocognitive
memory systems [7] that is defined in terms of its
special functions (what the system does or produces)
and its properties (how it does that). It shares many
features with semantic memory, which it grew out of,
but it also possesses features that semantic memory
does not have [8]. Episodic memory is oriented
towards the past in a way in which no other kind of
memory system is. It is the only memory system that
allows people to consciously re-experience their past. It
has a special and unique relationship with time [9].

The brain uses vast amounts of memory to create
a model of the world. Everything a person knows and
has learned is stored in this model. The brain uses this
memory-based model to make continuous predictions
of future events[10]. If those predictions are disproved,
the brain learns (e.g. by novelty detection [11]), and
adjusts its memories according to the new data. The
memory seems to be organized in a hierarchy, each
level being responsible for learning a small part of the
overall model. Kanerva [12] proposed a sparse
distributed memory (SDM) model that offers many of

the characteristics that a human memory possesses. He
also developed a mathematical model for this theory.

Reviewing characteristics of episodic memory in
humans it can be listed some inspiring:

Autonoetic: Remembering episodic memory is
characterised by a state of awareness unlike that in
semantic memory that is noetic. When one recollects
an event autonoetically, one re-experiences aspects of a
past experience. Re-experiencing of an already learnt
episode is not necessary.

Autobiographical: A person remembers an
episode from his or her own perspective. There is no
possibility to change the viewpoint in AI systems. To
put oneself in someone else’s place is the highest
achievement of human intelligence. Moreover, there
are studies proving that autobiographical and episodic
memory are separate memory systems [13].

Variable Duration: The time period that is
spanned by an episode is not fixed.

Temporally Indexed: The “rememberer” has a
sense of the time at which the remembered episode
occurred.

Imperfect: Our memory is incomplete and can
have errors. New sensations are forced to satisfy
already experienced concepts.

Primed: Recall occurs more quickly when it is
primed by repetition, recall of related information, or
similar states.

Forgetting: It is still not clear if forgetting is a
problem of actual information loss in long-term
memory (LTM), or rather a problem of recall of the
memory traces. Currently, mechanisms of active
forgetting are being discussed [14].

Level of Activation: Exposure frequency and
recency affect the speed and probability of recall. The
level of activation mainly describes the primacy &
recency effect where the former is based on LTM
effects and the latter is based on the contents of the
working memory.

Computationally, mechanisms of episodic

memory can be used to develop new learning
algorithms and experience-based prediction systems.
Agents that do not remember their past are bound to
repeat both the previous mistakes and the reasoning
efforts behind them. Thus, using an episodic memory
helps to save time by remembering solutions to
previously encountered problems and by anticipating
undesirable states. In literature several important
approaches to creating episodic memory in artificial
systems have been explored. Computational models of
episodic memory can be divided into two categories:
abstract and biological.

Abstract Models:

Make claims about the “mental algorithms” that
support recall and recognition judgments, without
addressing how these algorithms might be
implemented in the brain.

SOAR-EM - Nuxoll & Laird extend the CBR
paradigm by integrating episodic memory with a
general cognitive architecture and developing task
independent mechanisms for encoding, storing, and

retrieving episodes [16]. They extend SOAR, one of
the major cognitive architectures based on production
rules [17]. SOAR has two types of knowledge, working
memory (short-term, declarative) and production rules
(long-term, procedural) and has been extended with
episodic memory mechanisms into SOAR-EM. In
previous articles they propose a Packman-like domain
to wander around in a limited grid and collect the most
food-points in the least amount of time. Their goal was
for the agent to use its episodic memory in place of its
knowledge about the food-points to aid in selecting the
direction in which it should move. An activation-based
matching scheme leads to significantly better results
than its unbiased match predecessor that was
developed earlier. As the agent acquires more memory
items, the eater’s performance continues to improve
until it performs at a level comparable to the greedy
eater (that only heads to the best food in its direct
neighborhood) [18]. The hypotheses of cognitive
capabilities resulting from this episodic memory are
discussed and confirmed by implementations in their
article [16].

LIDA - The Learning IDA (LIDA) architecture

incorporates six major artificial intelligence software
technologies: the copycat architecture, sparse
distributed memory, pandemonium theory, the schema
mechanism, the behavior net model, and the sub-
sumption architecture [19]. LIDA is an extension for
the Intelligent Distribution Agent (IDA) — which is a
referred to as “conscious” software agent — by
perceptual, episodic, and procedural learning
capabilities. It was created as model of human
cognition that could be used to suggest possible
answers to questions about the human mind. The
authors designed and developed a practical application
that could act like a human detailer, a person who
negotiates with sailors about new jobs who are near the
end of their current tours of duty. A percept in the
LIDA architecture can be thought of as a set of
elements of a ontology that are relevant to the stimulus.
They organize this information into a binary vector,
where each field of one or more bits represents an
element of the ontology [19]. A cue (the binary vector)
will be used to query the content-addressable
memories, autobiographical memory (ABM) and
transient episodic memory (TEM). Both are based
closely on Kanerva’s sparse distributed memory
(SDM) [20]. A similarity between SDM circuits and
those of the cerebellar cortex are noted by [12].
Unfortunately, in this approach the whole domain must
be specified within ontology. It is limited to the domain
of providing new jobs to sailors.

Biological Models:

Make claims about the computation that support
recall and recognition judgments, the main difference
being that they also make specific claims about how
the brain gives rise to these computations. While the
former models account for challenging patterns of
behavioral recall and recognition data from list
learning paradigms, the brain-model mapping of the

latter models provides an extra source of constraints on
the model’s behavior. Even if Norman, Detre & Polyn
[15] outline a comprehensive overview on
computational models for episodic memory, only few
robotic systems exist that make use of such models for
learning.

2.3 ARCHITECTURE AND PATTERNS FOR EM:

2.4 SUCCESSFUL EPISODIC MEMORIES TYPES :

3 IMPLEMENTATION.

At this project there were at least three levels of
implementation. Firstly the integration between
WorldServer 3D environment and LIDA cognitive
platform – the sensors and actuators exported through
WS3D proxy interface were aligned with LIDA
“virtual mind” so that creatures at WS3D environment
passed to be agents controlled by LIDA.

After that, the environment was configured and
implemented to correspond to the business
requirements: “There will be one creature at the arena
center, turning around, observing events and taking
note of them – using our basic episodic memory. This
role is called “Detective”. At the end of execution, the
Detective will report, according to its observations,
which jewels were collected, time of event and creature
ID that collected it (by estimation). Also, it is not
uncommon the situation of a creature to be stuck when
passing by an object side. For these cases, detective
shall be able to send a message to release the creature –
this event also must be registered and reported. This
report will demonstrate how episodic memory can be
useful.”

The third level was to design and implement a
basic episodic memory that could be used by the
“Detective” and attend to business requirements.

3.1 WORLDSERVER 3D.
WorldServer3D is a 3D virtual environment

developed at JAVA platform by Prof. Ricardo
Gudwin’s Research Group - cogsys. In this virtual
environment, you can create a set of virtual creatures,
which are controlled by their sensors and actuators,
managed through sockets. Recently a proxy interface
was provided, which facilitates utilization.

The main purpose of this environment is to
provide a reference to the scientific community for
analysis and tests of computational minds derived from
various architectures and implementations.

The download of the WorldServer3D source code
and its proxy interface can be done from the computer
resources page of IA006 discipline:
http://faculty.dca.fee.unicamp.br/gudwin/courses/IA006/resources

3.2 LIDA – WS3D INTEGRATION.

- LIDA Project creation:

As a first step, it was created a new Java project,
WorldServerLIDA_Borelli, at NetBeans IDE. After
that, selecting project properties - library option, all
LIDA/lib .jar files were added to the Project, including
lida-framework-v1.2b (LIDA root folder) and
WS3DProxy.jar that provides communication interface
to WorldServer3D:

- LIDA configuration files:

The configs folder was created with the following
LIDA configuration files, as described at the tutorials
and architecture:
Agent.xml, LidaFactories.xsd, LidaXMLSchema.xsd,
factoryData.xml, guiCommands.properties,
guiPanels.properties and lidaConfig.properties.

Based on the previous activities using
WS3DProxy interface and LIDA exercises, the
integration was developed. Three packages were
created:
- org.detective: this package contains the main class.
- org.detective.detectors: contains the detection

classes.
- org.detective.modules: contains classes related to

the environment, creatures and sensorial memory.

The class org.detective.modules.Environment
extends edu.memphis.ccrg.lida.environment.EnvironmentImpl
that belongs to the LIDA library and represents the
virtual environment for perception and control. The
Environment class initialize all creatures and
environment artifacts at the init() method:

As oriented at the tutorial, the configuration files

receive the class names for each specific module. The
Environment class is indicated at the Agent.xml so that
the LIDA platform can recognize the class that
initialize the environment and communicate the events:

At the same way, detectors, sensory memory and other
configurations are also declared at this xml file:

The inner class private class BackgroundTask
extends lida.framework.tasks.FrameworkTaskImpl that
is responsible for agent operations at the virtual world.

The behavior for common creatures was defined
according to its leaflet, energy and what is at its front.
About the detective behavior, it has a detail – it will be
turning around at the arena center and not eating. Then,
at its behavior, we implemented Refuel tu be done
every update.

3.3 THE DETECTIVE ROLE AND BASIC EPISODIC
MEMORY UTILIZATION.

The figure below illustrates the WS3D arena with

a creature at the upper left corner and the detective at
the center. Both cameras are on and detecting.

WorldServer 3D
communication interface

Cria e inicializa o mundo
virtual através da interface
Proxy.

One behavior for
detectives and other for
common creatures.

The print below shows the detective camera
detection. At this stage, it was possible to observe that
the detective was able to detect the jewels and their
positions, but not detecting the creature. Detective was
wrongly detecting itself also. This was happening due
the WS3D version.

Action: rotate
Cor Jóia: Red
thing.getX1(): 761.5099282676305
thing.getY1(): 101.08824483809612
thing.getX2(): 773.5099282676305
thing.getY2(): 113.08824483809612
Cor Jóia: Green
thing.getX1(): 299.84325881153563
thing.getY1(): 36.73652300857365
thing.getX2(): 311.84325881153563
thing.getY2(): 48.73652300857365
Cor Jóia: Yellow
thing.getX1(): 587.3986882616115
thing.getY1(): 132.2377171039681
thing.getX2(): 599.3986882616115
thing.getY2(): 144.2377171039681
Cor Jóia: Magenta
thing.getX1(): 742.5034875886332
thing.getY1(): 56.80189971321468
thing.getX2(): 754.5034875886332
thing.getY2(): 68.80189971321468

After some running, the creature sack the green

jewel, and the detection pass to be:

Cor Jóia: Red
thing.getX1(): 761.5099282676305
thing.getY1(): 101.08824483809612
thing.getX2(): 773.5099282676305
thing.getY2(): 113.08824483809612
Cor Jóia: Yellow
thing.getX1(): 587.3986882616115
thing.getY1(): 132.2377171039681
thing.getX2(): 599.3986882616115
thing.getY2(): 144.2377171039681
Cor Jóia: Magenta
thing.getX1(): 742.5034875886332
thing.getY1(): 56.80189971321468
thing.getX2(): 754.5034875886332
thing.getY2(): 68.80189971321468

Note that it is perfectly possible the detective to
observe the missing jewel at that coordinate and
registry the event and timestamp – this is the
inspiration for the episodic memory to be dedicated for
this case.

Self detection:
Nome Criatura: Creature_1436919018367
thing.getX1(): 380.0
thing.getY1(): 380.0
thing.getX2(): 420.0
thing.getY2(): 420.0 this is the center position.

The basic Episodic Memory was implemented

using 3 Java HashMap classes. The mapEpsdc stores
all jewel detected by the Detective during one turn.

The mapEpsdcIN keeps the new ones and
mapEpsdc is cleared. The mapEpsdcOUT keeps all
missing jewel that were, therefore, collected by the
creature:

The report is printed at the console and shows, by the
Detective perspective which jewel were created, when,
also, which were collected and when:

4 CONCLUSIONS.
The LIDA architecture seems to be very flexible and
important for cognitive systems implementation.
It is clear the gain for the application and business in
cases were episodic memory is implemented. At the
present case, the Detective is capable, for example, to
release the creatures that can be stuck.
The review turn clear the importance of learning and
memory design to define the capabilities for the
architecture.
Next step, as a compromise, this review will be
complemented with more details about Episodic
Memories and the new one implemented for LIDA .

REFERENCES:
[1] A.Newell, Unified Theories of Cognition: Harvard
University Press, 1990.
[2] Artificial General Intelligence, 2008: Proceedings
of the First AGI Conference
[3] J.L.McClelland, D.E. Rumelhart and the PDP
Research Group, Parallel Distributed Processing:
Explorations in the Microstructures od Cognition.
Cambridge, MA: MIT Press, 1986.
[4] S. Franklin, The LIDA architecture: Adding new
modes of learning to an intelligent, autonomous,
software agent. In Proc. of the Int. Conf. on Integrated
Design and Process Technology, San Diego, CA:
Society for Design and Process Science, 2006.
[5] Johannes Engelkamp. Das menschliche Gedachtnis.
Hogrefe, Verlag fur Psychologie, Gottingen, 1990.
[6] Endel Tulving. Episodic and semantic memory. In
E. Tulving and W. Donaldson, editors, Organization of
Memory, New York, 1972. Academic Press.
[7] Daniel L. Schacter and Endel Tulving. Memory
Systems 1994. MIT Press, Cambridge, Sep. 1994.
[8] Endel Tulving and Hans J. Markowitsch. Episodic
and declarative memory: role of the hippocampus.
Hippocampus, 8(3):198–204, 1998.
[9] Endel Tulving. Episodic memory: From mind to
brain. Annual Review of Psychology, 53(1):1–25,
2002.
[10] Jeff Hawkins. On intelligence. Owl Books, New
York, 2005.
[11] Emilia I. Barakova and Tino Lourens. Spatial
navigation based on novelty mediated
autobiographical memory. In Mechanisms, Symbols,
and Models Underlying Cognition, volume 3561/2005
of Lecture Notes in Computer Science, pages 356–365,
Berlin / Heidelberg, 2005. Springer.
[12] Pentti Kanerva. Sparse Distributed Memory. MIT
Press, Cambridge, MA, USA, 1988.
[13] Hans J. Markowitsch. Neuropsychologie des
Gedachtnisses. Hogrefe Verlag fur Psychologie,
Gottingen ̈et. al, 1992.
[14] Michael C. Anderson, Kevin N. Ochsner, Brice
Kuhl, Jeffrey Cooper, Elaine Robertson, Susan W.
Gabrieli, Gary H. Glover, and John D. E. Gabrieli.
Neuralsystems underlying the suppression of unwanted
memories. Science, 303(5655):232–235, 2004.
[15] Kenneth A. Norman, Greg Detre, and Sean M.
Polyn. The Cambridge Handbook of Computational
Cognitive Modeling, chapter Computational Models of
Episodic Memory. August 2006.

