LIDA Tutorial Exercises

Version 1.0

Cognitive Computing Research Group, CCRG
The University of Memphis

Authors: Javier Snaider, Ryan McCall

Reviewer: Steve Strain

Introduction

These tutorial exercises are intended to be part of a larger tutorial that includes an introduction
to both the LIDA model of cognition and the LIDA software framework. The exercises have
been divided into two main projects titled BasicAgent and ALifeAgent. The exercises introduce
the participant to the framework by demonstrating several of its main features, the various
ways it can be customized, and the use of its GUI. Connections to the LIDA cognitive model are
made throughout. Several advanced take-home exercises are also provided.

This tutorial is a brief introduction to the capabilities of the LIDA Model and its software
Framework. For further information visit: http://ccrg.cs.memphis.edu/ and don’t hesitate to
contact us at ccrg@cs.memphis.edu. We hope you enjoy this tutorial as much as we did
preparing it.

Javier and Ryan

Tutorial Distribution Contents

Contents used for the tutorial exercises

1. readme.txt explanation of the distribution contents
2. LIDA-Tutorial-Exercises.pdf this pdf
3. tutorialProjects folder of ready-made NetBeans projects

specifically for the tutorial exercises
Contents to create your own project (see Appendix)

4. LIDA-framework-non-commercial-v1.0.pdf LIDA Framework non-commercial license

5. lida-framework-v1.1b.jar LIDA framework jar file

6. lida-framework-v1.1b-doc.zip archive of framework’s javadoc

7. lida-framework-v1.1b-src.zip archive of framework’s source files

8. libs directory of jars required by LIDA framework

Tutorial Project |

This first project involves a simple agent in the “Button” environment. This environment
randomly displays a red square, a blue circle, or is blank. It also has two buttons: button 1,
which should be pressed by the agent when a red square appears, and button 2, which should be
pressed when a blue circle appears. Note that the buttons that will appear in the GUI are
merely visualizations and pressing them has no effect.

This project was inspired by agents developed for the purpose of replicating human data from a
reaction time experiment; however, it was mainly chosen for this tutorial because of its
simplicity. The perceptual processes used in this project are simplified for pedagogical reasons.
As such they do not represent a complete implementation of the perceptual processes of the
current LIDA model.

Setup

1. If you haven’t already, install the Java JDK and NetBeans 6.9 or above

2. Unzip the tutorial distribution to a folder on your computer

3. With NetBeans running select File - Open Project...

4. Browse to the ‘tutorialProjects’ directory in the distribution folder and select

basicAgentExercises
5. Click open project
6. Right-click on the project in the Project view and select Set as Main Project

Basic Agent Exercise 0

Goals
- Explore a functional, basic agent

Preparation
- Open the basicAgentExercises project, find the ‘Source Packages’ folder and open it

Task 1

Explore structure of the project using the Projects view in NetBeans. Briefly browse through
the packages of the project looking for the following Java classes:

myagent.Run Runs the application
myagent.modules.ButtonEnvironment Button Environment
implementation

myagent.modules.ButtonSensoryMemory | Agent’s SensoryMemory
implementation

myagent.featuredetectors.ColorDetector | Color feature detector

myagent.featuredetectors.ShapeDetector | Shape feature detector

Now switch to the Files view (tab just next to the Projects view) in NetBeans. Browse to the
‘configs’ folder of the basicAgentExercises project. Find the following config files, which you
will be working with throughout these exercises:

lidaConfig.properties Main configuration file that serves as a
directory for the other configuration files
needed to build an agent application.

basicAgent.xml Agent declaration file. This file defines
the agent’s architecture including the
modules and processes the agent
application will use.

factoryData.xml Definition of the elements that can be
obtained from the ElementFactory. This
file defines several Node, Link, Strategy,
and Task types. These element types are
referenced by name, e.g. “defaultDecay”,
in the agent declaration file. (These same

names are also used by several
framework classes to obtain new
elements.)

guiPanels.properties Configuration file for the GuiPanels used
by the framework’s GUI. These panels
can be added, removed, and/or
customized using this file.

Note: None of these file names are mandatory. 1idaConfig.properties is the default name
of the main configuration file. However, any name could be used provided it appears as the first
command line argument of the AgentStarter.java class. The rest of the file names in this table
are defined in the 1idaConfig.properties file.

Basic Agent Exercise 1

Goals

- Become familiarized with the framework’s GUI

- Understand the tool bar and its functionality including start/pause, ticks, step mode, and
tick duration

- Become familiar with the Button Environment

- Learn about the Logging and ConfigurationFiles GuiPanels

Preparation
- Ifyou haven’t already, open the basicAgentExercises project
- Right-click, select Set as Main Project

- Now clicking the Run button (or pressing F6) will run Run.java in this project

Instructions
Task 1

Find the tool bar section of the GUI. It appears directly below the File, Panels, and Help menus.
Press the ‘Start/Pause’ button a few times to toggle the running of the simulation. The run
status appears just to the right of this button. To the right of this is the current tick text field.
Notice how it advances as the simulation runs.

Task 2

Next find the ‘Step Mode’ button and click it. The button will darken signifying that the system
is now in “Step Mode”. In this mode the application can be run for a specified amount of ticks at
a time. Try it now; enter 100 in the tick text field that appears to the right. Now click ‘Run

ticks’ and observe that the application runs 100 ticks and stops. Each time you press ‘Run ticks’
the application will run for a period of 100 ticks.

Task 3

Leave step mode by clicking the ‘Step mode’ button again. Find the tick duration control in the
far right of the tool bar. With the system running, use the arrows to adjust the tick duration to
20 and then to 0. Notice how the speed of the application changes.

Task 4:

With the application running find the “Logging” GuiPanel at the bottom. Each line in this panel
is a logger entry. The first column is the number of the log entry; the second is the tick at the
time of the log; next, the level of severity; then the name of the logger; finally, the message.

Find the first drop down list called “Logger”. This controls the logger whose logs are displayed
in this panel. In this menu, select myagent.modules.ButtonEnvironment. In the second drop
down list, “Level”, select a level of FINEST. This controls the level of logs that are created by this
particular logger (see java logger API for details). Notice now that there are additional logs
from the environment. A large volume of logs may slow down the speed of the application.
Each time the application is run the logging levels are returned to their default settings.

Task 5

Study the “ConfigurationFiles” GuiPanel which appears as a Tab in the same section as the
Logging Panel. This panel displays the configuration files currently used by the application. Its
table displays the content of the LidaConfig.properties file.

Basic Agent Exercise 2

Goals

- Become familiar with the functionality of a feature detector
- Become familiar with the functionality of a running attention codelet

- Study several GuiPanels in the GUI, including “PAM Table”, “Perceptual Buffer” and
“GlobalWorkspace”

- Customize the GUI by adding a GuiPanel to visualize the contents of the Workspace’s
Current Situational Model

Preparation
- Close the running application by selecting File — Exit
- Switch to the Files view in Netbeans, then open the ‘config’ folder in basicAgentExercises

- Open the lidaConfig.properties file and set the lida.agentdata property to
configs/basicAgent ex2.xml. Save the file. The agent created by this new
configuration file will have some missing parts, which we will be filling in for this and the
following exercises

- Run the application as before. Toggle the Start/Pause button. Note that this agent does
not perform “Press button 2” action

Instructions
Task 1

In the tool bar, set the tick duration value to 20. Make sure the application is not paused. Now
go to the “PAM table” GuiPanel. This table shows what the agent currently perceives as a result
of its recent sensory input. Observe the nodes ‘square’ and ‘red’; their activation values should
be changing. Their activation is 1.0 when a red square as sensed, and decays to 0.0 otherwise.
If there isn’t a red square present in the environment, you may need to wait a few moments
before the values change. On the other hand, the activation of the ‘blue’ and ‘circle’ nodes
should NOT be changing — this agent doesn’t have a feature detector for these PAM nodes yet.
In the next exercise, you will add feature detectors to the agent to allow it to perceive the blue
circles.

Task 2

Open the “PerceptualBuffer” GuiPanel. Observe how it changes over time. (Scrolling with your
mouse or trackpad zooms in and out. Also the window area can be clicked and dragged.) What
causes the panel to become empty? (Notice that the nodes here are not exactly the same ones
listed in the PAM Graph and Table, but rather instantiations of some of them.) Mouse-over the
nodes that appear here and their values will appear the tooltip (increase the tick duration to
make this easier). Note that these tooltip values are not updated in real-time.

STUDY QUESTION 1.1: What module of the LIDA Model is the Perceptual Buffer in? Where do the
nodes in this buffer come from? How do they differ from the nodes in other modules?

Task 3

Open the “GlobalWorkspace” GuiPanel and observe what is displayed here: In the top half of
this panel is a table that displays the Coalitions currently in the GlobalWorkspace and their
attributes. In the bottom half of this panel there is a table that displays the recent history (with
the top being most recent) of winning coalitions and their data.

STUDY QUESTION 1.2: Where do the coalitions in the Global Workspace come from? Where do
they go? Think about how the answer to these questions depends on whether we are discussing
the LIDA Model or a specific agent implemented using the Framework.

Task 4

Quit the application. Now we will add a GuiPanel to the GUI to display the contents of the
CurrentSituationalModel (a submodule of the Workspace Module). You will add a single line to
the ‘guiPanels.properties’ file. Model it after the line that defines the
perceptualBufferGraph. A comment appears in this file that explains the structure of
variable declarations. It should look like this:

#name = panelTitle, className, Position, tabOrder, refreshAfterload, parameters

Make a copy of the perceptualBufferGraph panel declaration. Now change the copied line; the
name to the left of the equal sign can be changed to csm, panelTitle to “CSM”, the className will
be the same, the position will be the same, tabOrder will be 7, and most importantly, the
parameter at the end should be: Workspace.CurrentSituationalModel.

Save the file, run the application, start the simulation, and adjust the tick duration if necessary.
The new CSM GuiPanel should appear among the tabs in the right section. If you used a tab
order of 7, it should appear as the last tab. Click the CSM tab and verify that nodes appear and
disappear in a manner similar to the Perceptual Buffer panel.

STUDY QUESTION 1.3: How are the contents of the Current Situational Model related to the
contents of the Perceptual Buffer? to the contents of PAM? Think about how the answer to these
questions depends on whether we are discussing the LIDA Model, or a specific agent implemented
in the Framework.

Basic Agent Exercise 3

Goals

Modify the agent declaration file to enhance the agent’s functionality. NOTE: Every
time the agent declaration file is changed, the application must be restarted before the
changes will take effect.

Add a module declaration to the agent xml file

Add a listener declaration to the agent xml file

Add feature detector declaration to the agent xml file
Add an attention codelet declaration to the agent xml file

Explore the agent xml file

Preparation

In the lidaConfig.properties file set the lida.agentdata property to
configs/basicAgent ex3.xml and save the file. Don’t run the application.

Study the diagram below. The dashed parts of the diagram represent the Framework
elements that you will be adding to the agent application during this exercise. Note that
not all modules and elements of the agent are shown here. Also note that this diagram,
while similar, is slightly different to that conceptual LIDA model for these modules.

Attention
Codelets

BlueCircle
Codelet

Perceptual

Associative DR S Workspace
Memory x> - b 1 Workspace

PamListener Global

Figure 1: Partial diagram of ButtonAgent’s architecture in Exercise 3
Dashed elements will be added during this exercise

Instructions
Task 1

In the ‘configs’ folder of the project open the basicAgent ex3.xml file. This file has an
agent declaration similar to the previous exercise, but is missing some elements (a module and
a listener). In this task and those that follow, you will extend this agent’s functionality by
adding the missing parts as well as some new ones (a feature detector and an attention codelet).

Tip: To easily navigate through the xml files, you can use the Navigator window in NetBeans
(see screenshot). You can see the structure of the xml file in this window and navigate to the
corresponding tag in the file by just clicking on the tag in the Navigator window.

basicA;ent ex1.xml - 203

- 104
basicAgent_ex2.xml
basicAgent_ex3.xml : Versioning O
basicAgent_ex3_solution.xml % @:] @D

factoryData.xml

-

= B S R R B

guiCommands.properties
guiPanels.properties

- F

quiPanels_ex2_solution.properties
lidaConfig.properties -

&=

: basicAgent_ex3.xml - Navigator P ®
(¢?) version="1.0" encoding="UTF-8"

=4 lida xmins="http: //ccrg.cs.memphis. ...

4® taskmanager

& ¥ taskspawners

K4 submodules |

4 listeners

R o R o R

Filters:

Task 2

Open the submodules tag. Add a module declaration! to the agent declaration file nested
within the <submodules> tag (there are comments indicating where to insert the new
declaration). Model the syntax of the new module declaration after the ActionSelection
module declaration in this section (you can copy this and edit the copy). The declaration must
be within a <module></module> tag pair, and should have the following tag values:

1 We use the term ‘declaration’ when an element is added to an agent declaration file, and ‘definition’ when a new
element is added to ElementFactory definition file.

name: Environment
class: myagent.modules.ButtonEnvironment

Also include the following two param tags noting the structure of parameter declarations. They
have a name, a type (int, boolean, string, double), and a value inside the tag. If not
specified, the default type of the parameter will be string:

Paraml: name="height” type="int"”, tag value is 10

Param?2: name="width” type="int”,tagvalueis 10
Finally include another tag as follows:

taskspawner is defaultTS

Save the file. Xml files can be validated at any time by right-clicking on the xml file body and
selecting Validate XML. (Alternatively there is a button in the toolbar with two triangles that
does the same thing.) Try it now to validate your changes. Look at the output tab below the
XML editor window. This tab will have a subtab that reads “XML check.” If your code has
proper syntax, the XML check subtab will read, “XML validation finished” with no error
messages. If there are errors in your syntax, error messages will appear to help you identify the
errors. (NOTE: the XML validation will not check the class names or parameter values, only the
XML syntax of the file).

Now run the application by pressing the NetBeans run button, and then click the Start/Pause
button to begin the simulation. The Button environment should appear running in the GUIL. Set
the tick duration to 10 or so to slow the simulation down enough so that you can see the
activation values changing in the PAM Table GuiPanel. Notice that the “red” and “square” nodes
are receiving activation, but not the “blue” and “circle” nodes. This is because feature detectors
for “blue” and “circle” have not yet been added to the PAM module. This will be done below in
Tasks 4 & 5.

However even though “red” and “square” have feature detectors that activate the appropriate
PAM nodes when these features are present in the ButtonEnvironment, these nodes do not
appear in the PerceptualBuffer GuiPanel. This is because the connection between PAM and the
Workspace has not yet been defined in this agent’s declaration file (this connection
corresponds to the arrow labeled “Move Percept” in the LIDA Model diagram). Therefore, this
agent can perceive red and square, but these nodes never enter the Workspace. In order to
make this connection, a PamListener must be added to the agent declaration file. This will be
done in the next task.

Task 3

Now open the <1isteners> tag in the agent xml file. Add a new listener declaration at the
beginning of this section, modeling it after the other listener declarations. The declaration
should have the following tag values

listenertype is edu.memphis.ccrg.lida.pam.PamListener
modulename is PerceptualAssociativeMemory
listenername is Workspace

Save the file. Rerun the application. Now the PerceptualBuffer should display nodes “red”
and "square” when the agent perceives a red square in the environment. If these nodes are not
appearing in the PerceptualBuffer when there is a red square in the ButtonEnvironment
GuiPanel, carefully check the declaration file and make sure that the new listener declaration
has the correct information. Also note that nodes for “blue” and “circle” do not appear in the
PerceptualBuffer, even when a blue circle is present in the environment. As mentioned above,
this is because there are no feature detectors in PAM for these features yet.

Task 4

Find the declaration of the PerceptualAssociativeMemory module. Now find the
<initialtasks> tag in this module declaration. Find the redDetector task declaration.
Add a new task declaration modeled after redDetector task.

Set its tag values as follows:
name: blueDetector
tasktype: ColorDetector
ticksperrun: 3
Set its parameters as follows:
Parameter 1
name="color” type="int”, tag valueis -16776961
Parameter 2
name="node” type="string”, tag value isblue
Task 5
Add another task declaration for a detection algorithm that detects a circle.

Set its tag values as follows:

name: circleDetector
tasktype: ShapeDetector
ticksperrun: 3
Set its parameters as follows:
Parameter 1
name="area” type="int”, tag value is 31
Parameter 2
name="backgroundColor” type="int”, tag value is -1
Parameter 3
name="node” type="string”, tag value is circle

Save the file, run the application, start the simulation, and adjust the tick duration if necessary.
Now view the Perceptual Buffer GuiPanel. Notice that the blue and circle nodes appear now.
However, the agent still does not ‘press button 2’ in response to blue circles. This is because
there is no attention codelet to add these nodes (as a Coalition) to the GlobalWorkspace.

Task 6

Go to the AttentionModule declaration in the agent xml file. Find its <initialtasks> tag.
Add another task declaration similar to the RedSquareCodelet. It should have the following
tag values:

name: blueCircleCodelet
tasktype: BasicAttentionCodelet
ticksperrun: 5
Set its parameters as follows:
Parameter 1
name="nodes” type="string”, tag value isblue,circle
Parameter 2
name="refractoryPeriod” type="int” tag value is 30
Parameter 3

name="initialActivation” type="double” tagvalueis1.0

Save the file. At this point run the application again and the agent should press button 2 in
response to blue circles.

Optional task

Those interested may examine the Java classes for the simple feature detectors used in this
project. They are located in the package myagent . featuredetectors

Advanced Exercises

Advanced Exercise 1

Logging & GUI Configuration. The LIDA Framework can be run without the GUIL. In order to
do so go to the 1idaConfig.properties file and change the property 1ida.gui.enable
to false. Now the application will run the agent without the GUI.

Optionally, the Logging can be configured so that the logging handlers will send the logs to a file
or to the console. The LIDA framework uses the standard Java logging mechanism; see
java.util.logging in the standard Java platform for details on this. The framework uses
the logging.properties file defined in the 1idaConfig.properties file. You can see
an example in the configs folder of this project.

Advanced Exercise 2

This exercise will introduce you to the effects of tuning the t i cksPerRun parameter.

Launch the application, set tickDuration to 10 before starting the simulation. Observe that
several coalitions in the upper part of the Global Workspace panel appear when the red square
appears in the environment. Now, exit the application...

- Set the lidaConfig.properties to run the basicAgent.xml agent declaration
- Open the agent xml file

- Go to the RedSquareCodelet declaration inside the Attention module’s
<initialtasks>tag

- Change ticksPerRunto 50
- Change refractoryPeriodto 300

- Launch application, set tickDuration to 10. There will be relatively few coalitions in the
upper part of the Global workspace panel when the red square appears. There should
also be less coalitions being broadcast (appearing in the lower section of the same panel).

Advanced Exercise 3

In this exercise you will be creating a feature detector class and adding it, an attention codelet,
and a scheme to the agent xml declaration file.

- Create your own feature detector to detect when the screen is white. Hint: copy ideas
from ShapeFeatureDetector

- Add this new feature detector in the factoryData.xml as another task in the
<tasks> section

- Find the ‘nodes’ parameter in the PerceptualAssociativeMemory module declaration.
Add another node here for empty

- In basicAgent.xml define a task for attention codelet with a parameter for the
empty node

- Create a new scheme declaration in ProceduralMemory following the format of the
existing schemes. The action of scheme can be action.releasePress

- In the SensoryMotorMemory module declaration, uncomment the third action-
algorithm association, a parameter named smm. 3

Now when the agent is run it will detect the empty environment and perform the releasePress
action in response. This action releases any button that is currently pressed.

Conclusion

This concludes the exercises for the basicAgentExercises project. In these exercises we have
focused on these topics:

- The framework’s GUI including the tool bar’s basic functionality and several GuiPanels
displaying the internal state of the agent.

- GuiPanels for logging and for configuration files

- The agent xml declaration file and how to modify it including adding a module, a listener,
feature detectors, and attention codelets.

- Functionality and definition of feature detectors and attention codelets

- Adding a GuiPanel to the framework’s GUI

Tutorial Project Il

This tutorial project involves an agent, “our fearless hero”, in the “Hamburger Jungle”
environment. This is a grid world environment where locations are represented as discrete
cells. In each cell 0 or more objects can exist, however, cells have a capacity which cannot be
exceeded. In this particular implementation there are the following objects: an agent, evil
monkeys, trees, rocks, and delicious hamburgers. The evil monkeys move randomly and will
try to harm the agent if they are in the same cell. Rocks occupy an entire cell so that no other
object may enter that cell. The agent can only sense the objects that are in its current cell and
the objects in the cell in front of it in the direction it is facing. It can also sense its own health.
The agent can perform the following actions: move forward one cell, turn left, turn right, turn
around, eat, and flee (turn and move forward). The agent’s health diminishes a small amount
every tick. Also, health is decreased if a monkey attacks the agent; the agent tries to move into a
cell with a rock, or tries to move outside of the world’s boundaries. Eating a hamburger
increases the agent’s health substantially. These properties of the agent and its environment
are summarized in the Table below.

Project Il Environment & Agent

Environment Attributes Agent, evil monkeys, trees, rocks, hamburgers

10 x 10 grid (cells can contain zero or more
objects)

Monkeys move randomly and cannot enter
cells with rocks or trees

Agent cannot enter cells with rocks

Sensing Objects in current and facing cell, health

Actions Move forward, turn left, turn right, turn
around, eat, flee

Agent Health + eat hamburger

- attacked by monkey, moves into rock,
moves out of bounds, time

Environment Icons

~

Agent R
Monkey /ﬂ

Food

e aRrne?]
Tree @

Rock

L. Y

Multiple Objects H‘
y

The perceptual processes used in this project are simplified for pedagogical reasons. They do
not represent a full implementation of the perceptual processes of the current LIDA model.

Setup
- With NetBeans running select File - Open Project...
- Browse to the ‘tutorialProjects’ directory and select alifeAgentExercises

- Click open project. Right-click on the project in the Project view and select Set as Main
Project.

Agent Exercise 1

Goals

- Explore a functional ALife agent

Preparation

- Open the alifeAgentExercises project in NetBeans. Right-click on the project in the
Project view and select Set as Main Project. Run the project (F6).

Instructions
Task 1

Click on an occupied cell in the AlifeEnvironment GuiPanel, which appears in the upper left.
Notice that the window just to the right now displays the cell’s contents. To the right of that the
information about the cell and the objects it contains are displayed. You may have to resize the
dividers to see the information. Clicking on an object in the objects list will display its attributes

in the table below. Additionally all objects can be individually selected from the drop down list
in this section to view object attributes.

STUDY QUESTION 2.1: Compare the GUI of the alifeAgent to that of the basicAgent. What are the
differences, and why are they different?

Task 2

Inspect the “PAM Graph” GuiPanel. Try pressing the relax button to spread out the nodes and
links. Zoom in and out by scrolling with mouse wheel. Also see the “PAM Table” GuiPanel for a
different view of PAM’s nodes and links.

Task 3

Start the simulation. The agent navigates the world avoiding the evil monkeys and exploring
when its health gets low. It eats the hamburgers when it can. Click on the ‘Task Queue”
GuiPanel and pause the application. Look at the tasks that are scheduled to run at various ticks.
Now click on the “Running Tasks” GuiPanel to view a list of all of the currently active tasks and
their data.

ALife Agent Exercise 2

Goals

- Create a feature detector class
- Add a task definition to the factoryData.xml file
- Add a task declaration to the agent xml file.

- Add a new task declaration to the agent xml file based on an existing one.

Preparation

- From the Files view in NetBeans open the 1idaConfig.properties file in the
‘configs’ folder of the alifeAgentExercises project. Change the lida.agentdata
property to configs/alifeAgent ex2.xml. Save the file.

- Also in the ‘configs’ folder find and open the objects.properties file. Change the
quantity value (QTY) for food to O (it’s just to the right of the first equals sign).

Instructions
Task 0

Run the application and start the simulation. Choose the agent from the drop-down list in the
GUI and watch the agent’s health as it behaves in its environment. Notice how the agent fails to
move when it has low health, i.e., health below 0.33. Quit the application.

Task 1

Go to the Projects view in NetBeans and right-click on the icon for the
alifeagent.featuredetectors package. Now select New — Java Class... to create a new
class and name it BadHealthDetector. It will extend from
BasicDetectionAlgorithm. java and should detect bad health, i.e., when health is below
0.33. You can simply copy the code of GoodHealthDetector. java changing the class name
to BadHealthDetector and also modifying the i f statement appropriately.

Task 2

Add a BadHealthDetector task definition to factoryData.xml modeled after the other
health detectors. First, open the factoryData.xml file. Go to the <tasks> section. Find the
comment INSERT YOUR CODE HERE. C(reate a new task entry similar that of the
FairHealthDetector. Give it the name BadHealthDetector and set its <class> tag
value to be the qualified (package + classname) of the class you created in Task 1. The other tag
values are exactly the same as the FairHealthDetector.

Xml files can be validated at any time by right clicking on the xml file body and selecting
Validate XML. Validate and save the file.

Task 3

Add a task to the declaration of the agent’s PerceptualAssociativeMemory module in
alifeAgent ex2.xml file. First go to the <initialtasks> tag of the
PerceptualAssociativeMemory module declaration. Create a new task entry with the
name BadHealthDetector. The tasktype is BadHealthDetector (you just created
this type in the last task), the ticksperrun is 3, and add a node parameter of type string with
value badHealth. The entry should look similar to the one for GoodHealthDetector.

Validate and save the file.
Task 4

Also in the agent xml file, add a predatorFrontDetector to the initial tasks of the
PerceptualAssociativeMemory module. This task is similar to the previous one. Hint:
model it after the predatorOriginDetector. The position parameter is 0 for origin and 1
for front. Since this is of tasktype ObjectDetector, you will not need to create a new Java
class for this feature detector.

Save the file and run the application again. The agent now has two new feature detectors, and
two new perceptive capabilities. Observe its behavior; it should now detect when it has bad
health (see Perceptual Buffer GuiPanel) and it should begin moving when it has bad health.
Also the agent should run away from the predator when it has a predator in front of it.
Previously the agent would only flee if the predator was in the same cell as it.

STUDY QUESTION 2.2: Why does the agent’s behavior change in this way after the new feature
detectors were added?

ALife Agent Exercise 3

Goals

- Create and modify attention codelets

- Learn the effects of changing attention codelet parameters

Preparation

- In lidaConfig.properties file change the lida.agentdata property to
configs/alifeAgent ex3.xml. Save the file. Some of the agent’s attentional
mechanisms have been removed; they will be restored during this exercise.

- In the ‘configs’ folder find and open the objects.properties file. Change the
quantity value (QTY) for food back to 10.

Instructions
Task 0

Run the application and start the simulation. Notice that the agent doesn’t react to predators at
all.

STUDY QUESTION 2.3: What are the possible reasons the agent doesn'’t flee?
Task 1

In this task you will create a predatorAttentionCodelet task in the AttentionCodelet
module’s initial tasks. Open the alifeAgent ex3.xml file, now (you can use the Netbeans
Navigator) go to the AttentionModule declaration, go to the <initialtasks> tag and
create a new task entry similar to RockAttentionCodelet.

The name will be PredatorAttentionCodelet, the tasktype will be
NeighborhoodAttentionCodelet, ticksPerRun will be 5; nodes will be predator;
refractoryPeriod will be 50 and initialActivation will be 1. 0.

Save the file and run the application, now the agent will create coalitions (see the Global
Workspace Panel) with predator nodes inside the coalitions’ content.

STUDY QUESTION 2.4: How might this affect the agent’s cognition and behavior?
Task 2

Open the agent xml file and change the initialActivation parameter for the
FoodAttentionCodelet to 0.01. (This task declaration is also in the <initialtasks>
tag of the AttentionModule declaration.) Run the application until it starts moving and see
if the agent ever reacts to (i.e., eats) any food it comes across. (It most likely won’t react.)

STUDY QUESTION 2.5: How does this parameter change affect the agent’s cognition?

Task 3

Open the agent xml file and reset the initialActivation parameter for the
FoodAttentionCodelet to 1.0. Save the file and run the application. Set the tick duration
to 40 in the GUI to slow the simulation speed.

Look at the upper half of the Global Workspace GuiPanel and notice how often coalitions
containing ‘goodHealth’ appear there. It may help to pause the application and resize the table
columns.

Now exit the application and look for the GoodHealthAttentionCodelet declaration in
the <initialtask> tag of the AttentionModule module. Set the refractoryPeriod
parameter to 10. Run the application again and notice how coalitions containing ‘goodHealth’
appears. The frequency should have increased.

ALife Agent Exercise 4

Goals

- Modify schemes in Procedural Memory
- Use a custom Initializer for the Perceptual Associative Memory module

- Obtain non-default decay strategy from the ElementFactory

Preparation

- In lidaConfig.properties file change the lida.agentdata property to
configs/alifeAgent ex4.xml. Save the file.

Instructions
Task 0

Run the application and start the simulation. Notice that the agent doesn’t move from its cell
unless its health drops below 0.66. (However, it will still move if an evil monkey comes close.)

Task 1

In the alifeAgent_ex4.xml file and find the ProceduralMemory module. Inside this
module’s declaration find the <param> tag named scheme.10b. Change the action name,
which appears after the second pipe (]), to action.moveAgent. Optionally change the
description of the scheme (the first part of the tag value). Save the file.

Run the agent and notice that it now moves even when it has good health.

Task 2

Now we will customize the initialization of some of the elements in PAM. The default Initializer
for PAM, BasicPamInitializer, reads two parameters named “nodes” and “links” and
creates Nodes and Links in PAM based on the specifications in these parameters. Nodes and
Links created in this way will use default excite and decay strategies. In order to obtain
elements with non-default strategies, a custom Initializer is required. Most other modules can
also be initialized with a custom Initializer.

Open the alifeAgent_ex4.xml xml file and find the PerceptualAssociativeMemory
module declaration. In this declaration change the <initializerclass> tag value to
alifeagent.initializers.CustomPamInitializer. Save the file. Now go to the
Project view in NetBeans and open the CustomPamInitializer class in package
alifeagent.initializers. This class is a partial implementation of a custom initializer
for the PAM of an agent in the aLife environment. This initializer will enable the agent to add
customized nodes and links to PAM, which is not possible using the default initializer. In its
current form, this class does two things:

1. Adds a new Node to PAM labeled “object”

2. Adds anew Link to PAM from the “rock” Node to the new “object” node.

The implication of this Link is that any time the agent perceives a rock; the object node in PAM
will receive a portion of the rock node’s activation.

For this task you will be creating a new link in PAM from “food” to “object”. This means that the
“object” node will also receive activation when food is perceived. You can follow the
instructions given in the comments of this class to complete this task.

Run the agent and look at the PAM table GuiPanel. There should be an entry for the “object”
node. Also in the PAM graph GuiPanel you can find the “object” node with these two links
attached to it. Before, this Node only received activation when the agent detected a rock. Now
it will receive activation whenever the agent detects a rock or food. This “object” node may
enter the PerceptualBuffer as part of percept if it has sufficient activation, just like any other
PAM node.

(Note: It is possible to create a Node with two children using the default initializer for PAM.
However, adding a non-default decay strategy, as we will do in Task 3, requires the custom
Initializer.)

Task 3

Continuing in the CustomPamInitializer class, we want to adjust the DecayStrategy used
by the “object” Node. The DecayStrategy governs how a Node’s activation is decayed over time.
The available DecayStrategy types are defined in the factoryData.xml file. Go to this file
now and in the <strategies> tag look for a strategy definition named slowDecay. Notice
that the parameter for this strategy is very small which implies a slow decay rate. You are going
to use this strategy for the “object” node. To do this copy the following code and add it in the
CustomPamInitializer class. A comment in this class will indicate where to insert it.

DecayStrategy decayStrategy = factory.getDecayStrategy ("slowDecay") ;
objectNode.setDecayStrategy (decayStrategy) ;

This code obtains the “slowDecay” strategy from the ElementFactory and sets it as the “object”
Node’s decay strategy. Save this file and run the application. Find the object node entry in the
PAM table GuiPanel. Now when the object Node is detected its current activation will remain
high (1.0) for a very long period compared to the rock and food nodes (as well as most other
nodes in this agent’s PAM).

Advanced Exercises

Advanced Exercise 1

The agent currently does not do anything when facing a tree. When the agent is in a cell with a
tree he will be safe from the evil monkeys. Add a new attention codelet declaration to agent xml
file that attends to the “tree” node. Add a new scheme to Procedural Memory with a context of
treeFront node, and the action action.moveAgent.

Advanced Exercise 2

The Action Selection module used for this project is fairly simple. Based on it, create a new
Action Selection class, which extends FrameworkModuleImpl and implements the
ActionSelection and BroadcastListener interfaces. Modify the agent xml file adding a
new listener declaration where the ActionSelection is a BroadcastListener of the
GlobalWorkspace. Change the declaration of the ActionSelection module in the agent xml
file so that it uses the class that you have created. In this module try your own algorithm for
selecting an action. For example, you can require that a Behavior’s context must be present in
the current broadcast before it is eligible for selection.

Conclusion

This concludes the exercises for the alifeAgent project. In these exercises we have focused on
these topics:

- Creating a feature detector class, adding a task definition to factoryData.xml, adding
a task declaration to the agent xml file

- Creating attention codelets and changing their parameters
- Working with schemes in Procedural Memory

- Customizing modules using Initializers and elements with the ElementFactory

Appendix

Creating a New LIDA Framework Project

The description that follows is for installing and running the framework with NetBeans 6.9 or
above.

1. With NetBeans running select File - New Project...
a. SelectJava for categories and select Java Application for projects
2. Give the project a name
a. Uncheck Create main class
b. Check Set as main project
3. Include required Libraries
a. Right-click project, select Properties
b. Select Libraries
c. Add]JAR / folder
i. Add all jars from lib
ii. Add framework jar
4. Setreferences to source code and Javadoc for LIDA framework Library
a. Go to Properties — Libraries — Select lida-framework-v1.0b.jar
i. Edit framework jar and select the respectively zip files.
5. Create a ‘config’ folder and add all necessary configuration files.

a. In NetBeans go to the Files view and create the ‘config’ folder inside the Project
from here.

b. Add the following configuration files (you can copy those from a tutorial project):
i. agent xml file
ii. factoryData xml file
iii. guiPanels properties
iv. guiCommands properties

v. lidaConfig properties

vi. LidaXMLSchema.xsd

vii. LidaFactories.xsd

Study Question Answers

STUDY QUESTION 1.1: What module of the LIDA Model is the Perceptual Buffer in? Where do the
nodes in this buffer come from? How do they differ from the nodes in other modules?

A: The Perceptual Buffer is in the Workspace (therefore, it is implemented as a submodule of
the Workspace in the Framework). The nodes in the buffer come asynchronously from PAM
nodes that have activation above the threshold. The nodes in the Workspace are Activatible, but
not Learnable; they have current activation but not base-level activation (like PAM nodes).
However, they are copies of PAM nodes, and represent the same data as those nodes, and they
have a reference to the original PAM node. They can have different excite and decay strategies
from the PAM nodes, and different linkage patterns.

STUDY QUESTION 1.2: Where do the coalitions in the Global Workspace come from? Where do
they go? Think about how the answer to these questions depends on whether we are discussing
the LIDA Model or a specific agent implemented using the Framework.

A: Coalitions come from the Workspace. In the Model, one coalition wins the competition and
is chosen for broadcast to most other modules (see the arrows in the LIDA Model diagram). In a
particular implementation of an agent using the Framework, the broadcast will only go to
modules that implement BroadcastListener and have registered as listeners with the agent’s
GlobalWorkspace module.

STUDY QUESTION 1.3: How are the contents of the Current Situational Model related to the
contents of the Perceptual Buffer? To the contents of PAM? Think about how the answer to these
questions depends on whether we are discussing the LIDA Model, or a specific agent implemented
in the Framework.

A: In the LIDA Model, CSM should contain the agent’s idea about what is currently happening in
the external and/or internal environments. It will be built by Structure Building Codelets,
primarily out of input from PAM and Declarative Memory Modules, In a specific Framework
implementation, the CSM’s contents will depend on the specifications in the agent declaration
and other configuration files. In the basicAgent exercise, there are no Declarative Memory
modules, and all of the CSM contents are from the Perceptual Buffer by way of PAM.

STUDY QUESTION 2.1: Compare the GUI for the alifeAgent to the GUI of basicAgent. What are
the differences, and why are they different?

A: The differences in the GUI between the two agents are due to differences in the
guiPanels.properties file. Inspecting the files shows the differences. The two agents
have different environments, and the alifeAgent does not have a CSM panel (which was
added to basicAgent in the exercises of Project I).

STUDY QUESTION 2.2: Why does the agent’s behavior change in this way after the new feature
detectors were added?

A: The agent already has Schemes in Procedural Memory to respond to bad health and
predators (see the declarations for Schemes 6 and 8 in the ProceduralMemory section of
the agent declaration file). When the new perceptive capabilities are added, it begins to use
these Schemes appropriately.

STUDY QUESTION 2.3: What are the possible reasons the agent doesn’t flee?

A: It may be that the agent cannot perceive the predator (feature detector absent); it cannot
bring such a perception to consciousness (attention codelet missing); and/or it does not have
an action mechanism to allow it to flee from predators (Scheme and/or Behavior missing). In
the case of alifeAgent_Exercise 3, the agent is missing the attention codelet for predators, so it
cannot pay attention to them.

STUDY QUESTION 2.4: How does this affect the agent’s cognition and behavior?

A: The agent can now bring the “concept” of a predator to “consciousness” and act
appropriately.

STUDY QUESTION 2.5: How does this parameter change affect the agent’s cognition?

A: It becomes less “interested” in food, and less likely to “notice” it.

