Tutorial Project |

This first project involves a simple agent in the “Button” environment. This environment
randomly displays a red square, a blue circle, or is blank. It also has two buttons: button 1,
which should be pressed by the agent when a red square appears, and button 2, which should be
pressed when a blue circle appears. Note that the buttons that will appear in the GUI are
merely visualizations and pressing them has no effect.

This project was inspired by agents developed for the purpose of replicating human data from a
reaction time experiment; however, it was mainly chosen for this tutorial because of its
simplicity. The perceptual processes used in this project are simplified for pedagogical reasons.
As such they do not represent a complete implementation of the perceptual processes of the
current LIDA model.

Setup

If you haven'’t already, install the Java JDK and NetBeans 6.9 or above

Unzip the tutorial distribution to a folder on your computer

With NetBeans running select File - Open Project...

Browse to the ‘tutorialProjects’ directory in the distribution folder and select
basicAgentExercises

Click open project

Right-click on the project in the Project view and select Set as Main Project

B W

AN

Basic Agent Exercise 0

Goals

- Explore a functional, basic agent

Preparation
- Open the basicAgentExercises project, find the ‘Source Packages’ folder and open it

Task 1

Explore structure of the project using the Projects view in NetBeans. Briefly browse through
the packages of the project looking for the following Java classes:

myagent.Run Runs the application
myagent.modules.ButtonEnvironment Button Environment
implementation

myagent.modules.ButtonSensoryMemory | Agent’s SensoryMemory
implementation

myagent.featuredetectors.ColorDetector | Color feature detector

myagent.featuredetectors.ShapeDetector | Shape feature detector

Now switch to the Files view (tab just next to the Projects view) in NetBeans. Browse to the
‘configs’ folder of the basicAgentExercises project. Find the following config files, which you
will be working with throughout these exercises:

lidaConfig.properties Main configuration file that serves as a
directory for the other configuration files
needed to build an agent application.

basicAgent.xml Agent declaration file. This file defines
the agent’s architecture including the
modules and processes the agent
application will use.

factoryData.xml Definition of the elements that can be
obtained from the ElementFactory. This
file defines several Node, Link, Strategy,
and Task types. These element types are
referenced by name, e.g. “defaultDecay”,
in the agent declaration file. (These same

names are also used by several
framework classes to obtain new
elements.)

guiPanels.properties Configuration file for the GuiPanels used
by the framework’s GUI. These panels
can be added, removed, and/or
customized using this file.

Note: None of these file names are mandatory. 1idaConfig.properties is the default name

of the main configuration file. However, any name could be used provided it appears as the first
command line argument of the AgentStarter.java class. The rest of the file names in this table
are defined in the 1idaConfig.properties file.

Basic Agent Exercise 1

Goals
- Become familiarized with the framework’s GUI

- Understand the tool bar and its functionality including start/pause, ticks, step mode, and
tick duration

- Become familiar with the Button Environment

- Learn about the Logging and ConfigurationFiles GuiPanels

Preparation
- Ifyou haven’t already, open the basicAgentExercises project
- Right-click, select Set as Main Project

- Now clicking the Run button (or pressing F6) will run Run.java in this project

Instructions
Task 1

Find the tool bar section of the GUI. It appears directly below the File, Panels, and Help menus.
Press the ‘Start/Pause’ button a few times to toggle the running of the simulation. The run
status appears just to the right of this button. To the right of this is the current tick text field.
Notice how it advances as the simulation runs.

Task 2

Next find the ‘Step Mode’ button and click it. The button will darken signifying that the system
is now in “Step Mode”. In this mode the application can be run for a specified amount of ticks at
a time. Try it now; enter 100 in the tick text field that appears to the right. Now click ‘Run

ticks’ and observe that the application runs 100 ticks and stops. Each time you press ‘Run ticks’
the application will run for a period of 100 ticks.

Task 3

Leave step mode by clicking the ‘Step mode’ button again. Find the tick duration control in the
far right of the tool bar. With the system running, use the arrows to adjust the tick duration to
20 and then to 0. Notice how the speed of the application changes.

Task 4:

With the application running find the “Logging” GuiPanel at the bottom. Each line in this panel
is a logger entry. The first column is the number of the log entry; the second is the tick at the
time of the log; next, the level of severity; then the name of the logger; finally, the message.

Find the first drop down list called “Logger”. This controls the logger whose logs are displayed
in this panel. In this menu, select myagent.modules.ButtonEnvironment. In the second drop
down list, “Level”, select a level of FINEST. This controls the level of logs that are created by this
particular logger (see java logger API for details). Notice now that there are additional logs
from the environment. A large volume of logs may slow down the speed of the application.
Each time the application is run the logging levels are returned to their default settings.

Task 5

Study the “ConfigurationFiles” GuiPanel which appears as a Tab in the same section as the
Logging Panel. This panel displays the configuration files currently used by the application. Its
table displays the content of the LidaConfig.properties file.

Basic Agent Exercise 2

Goals

- Become familiar with the functionality of a feature detector
- Become familiar with the functionality of a running attention codelet

- Study several GuiPanels in the GUI, including “PAM Table”, “Perceptual Buffer” and
“GlobalWorkspace”

- Customize the GUI by adding a GuiPanel to visualize the contents of the Workspace’s
Current Situational Model

Preparation
- Close the running application by selecting File - Exit
- Switch to the Files view in Netbeans, then open the ‘config’ folder in basicAgentExercises

- Open the lidaConfig.properties file and set the lida.agentdata property to
configs/basicAgent ex2.xml. Save the file. The agent created by this new
configuration file will have some missing parts, which we will be filling in for this and the
following exercises

- Run the application as before. Toggle the Start/Pause button. Note that this agent does
not perform “Press button 2” action

Instructions
Task 1

In the tool bar, set the tick duration value to 20. Make sure the application is not paused. Now
go to the “PAM table” GuiPanel. This table shows what the agent currently perceives as a result
of its recent sensory input. Observe the nodes ‘square’ and ‘red’; their activation values should
be changing. Their activation is 1.0 when a red square as sensed, and decays to 0.0 otherwise.
If there isn’t a red square present in the environment, you may need to wait a few moments
before the values change. On the other hand, the activation of the ‘blue’ and ‘circle’ nodes
should NOT be changing — this agent doesn’t have a feature detector for these PAM nodes yet.
In the next exercise, you will add feature detectors to the agent to allow it to perceive the blue
circles.

Task 2

Open the “PerceptualBuffer” GuiPanel. Observe how it changes over time. (Scrolling with your
mouse or trackpad zooms in and out. Also the window area can be clicked and dragged.) What
causes the panel to become empty? (Notice that the nodes here are not exactly the same ones
listed in the PAM Graph and Table, but rather instantiations of some of them.) Mouse-over the
nodes that appear here and their values will appear the tooltip (increase the tick duration to
make this easier). Note that these tooltip values are not updated in real-time.

STUDY QUESTION 1.1: What module of the LIDA Model is the Perceptual Buffer in? Where do the
nodes in this buffer come from? How do they differ from the nodes in other modules?

Task 3

Open the “GlobalWorkspace” GuiPanel and observe what is displayed here: In the top half of
this panel is a table that displays the Coalitions currently in the GlobalWorkspace and their
attributes. In the bottom half of this panel there is a table that displays the recent history (with
the top being most recent) of winning coalitions and their data.

STUDY QUESTION 1.2: Where do the coalitions in the Global Workspace come from? Where do
they go? Think about how the answer to these questions depends on whether we are discussing
the LIDA Model or a specific agent implemented using the Framework.

Task 4

Quit the application. Now we will add a GuiPanel to the GUI to display the contents of the
CurrentSituationalModel (a submodule of the Workspace Module). You will add a single line to
the ‘guiPanels.properties’ file. Model it after the line that defines the
perceptualBufferGraph. A comment appears in this file that explains the structure of
variable declarations. It should look like this:

#name = panelTitle, className, Position, tabOrder, refreshAfterLoad, parameters

Make a copy of the perceptualBufferGraph panel declaration. Now change the copied line; the
name to the left of the equal sign can be changed to csm, panelTitle to “CSM”, the className will
be the same, the position will be the same, tabOrder will be 7, and most importantly, the
parameter at the end should be: Workspace.CurrentSituationalModel.

Save the file, run the application, start the simulation, and adjust the tick duration if necessary.
The new CSM GuiPanel should appear among the tabs in the right section. If you used a tab
order of 7, it should appear as the last tab. Click the CSM tab and verify that nodes appear and
disappear in a manner similar to the Perceptual Buffer panel.

STUDY QUESTION 1.3: How are the contents of the Current Situational Model related to the
contents of the Perceptual Buffer? to the contents of PAM? Think about how the answer to these
questions depends on whether we are discussing the LIDA Model, or a specific agent implemented
in the Framework.

Basic Agent Exercise 3

Goals

Modify the agent declaration file to enhance the agent’s functionality. NOTE: Every
time the agent declaration file is changed, the application must be restarted before the
changes will take effect.

Add a module declaration to the agent xml file

Add a listener declaration to the agent xml file

Add feature detector declaration to the agent xml file
Add an attention codelet declaration to the agent xml file

Explore the agent xml file

Preparation

i Environment |

In the lidaConfig.properties file set the lida.agentdata property to
configs/basicAgent_ex3.xml and save the file. Don’t run the application.

Study the diagram below. The dashed parts of the diagram represent the Framework
elements that you will be adding to the agent application during this exercise. Note that
not all modules and elements of the agent are shown here. Also note that this diagram,
while similar, is slightly different to that conceptual LIDA model for these modules.

Attention
Codelets

BlueCircle
Codelet

Perceptual

Associative PUISEREREL . Workspace
Y o i Work:
Memory # - orkspace

PamlListener Global

Figure 1: Partial diagram of ButtonAgent’s architecture in Exercise 3
Dashed elements will be added during this exercise

Instructions
Task 1

In the ‘configs’ folder of the project open the basicAgent ex3.xml file. This file has an
agent declaration similar to the previous exercise, but is missing some elements (a module and
a listener). In this task and those that follow, you will extend this agent’s functionality by
adding the missing parts as well as some new ones (a feature detector and an attention codelet).

Tip: To easily navigate through the xml files, you can use the Navigator window in NetBeans
(see screenshot). You can see the structure of the xml file in this window and navigate to the
corresponding tag in the file by just clicking on the tag in the Navigator window.

basicA;ent ex1.xml - Le!

- 104
basicAgent_ex2.xml
basicAgent_ex3.xml : Versioning O
basicAgent_ex3_solution.xml Eﬁj @

factoryData.xml
guiCommands.properties

{#}

@)) @ @) RS EF R EIRS|

&=

guiPanels.properties

&

guiPanels_ex2_solution.properties

[lidaConfig.properties -
: basicAgent_ex3.xml - Navigator P R

(¢?) version="1.0" encoding="UTF-8"

= @»lida xmins= http://ccrg.cs.memphis....
[+ € & taskmanager
[+ € » taskspawners

8 gsubmodues

[+ 4P listeners

Filters:

Task 2

Open the submodules tag. Add a module declaration! to the agent declaration file nested
within the <submodules> tag (there are comments indicating where to insert the new
declaration). Model the syntax of the new module declaration after the ActionSelection

module declaration in this section (you can copy this and edit the copy). The declaration must
be within a <module></module> tag pair, and should have the following tag values:

1We use the term ‘declaration’ when an element is added to an agent declaration file, and ‘definition’ when a new
element is added to ElementFactory definition file.

name: Environment
class: myagent.modules.ButtonEnvironment

Also include the following two param tags noting the structure of parameter declarations. They
have a name, a type (int, boolean, string, double), and a value inside the tag. If not
specified, the default type of the parameter will be string:

Param1l: name="height” type="int"”, tag valueis 10

Param2: name="width” type="int”,tagvalueis10
Finally include another tag as follows:

taskspawner is defaultTS

Save the file. Xml files can be validated at any time by right-clicking on the xml file body and
selecting Validate XML. (Alternatively there is a button in the toolbar with two triangles that
does the same thing.) Try it now to validate your changes. Look at the output tab below the
XML editor window. This tab will have a subtab that reads “XML check.” If your code has
proper syntax, the XML check subtab will read, “XML validation finished” with no error
messages. If there are errors in your syntax, error messages will appear to help you identify the
errors. (NOTE: the XML validation will not check the class names or parameter values, only the
XML syntax of the file).

Now run the application by pressing the NetBeans run button, and then click the Start/Pause
button to begin the simulation. The Button environment should appear running in the GUIL. Set
the tick duration to 10 or so to slow the simulation down enough so that you can see the
activation values changing in the PAM Table GuiPanel. Notice that the “red” and “square” nodes
are receiving activation, but not the “blue” and “circle” nodes. This is because feature detectors
for “blue” and “circle” have not yet been added to the PAM module. This will be done below in
Tasks 4 & 5.

However even though “red” and “square” have feature detectors that activate the appropriate
PAM nodes when these features are present in the ButtonEnvironment, these nodes do not
appear in the PerceptualBuffer GuiPanel. This is because the connection between PAM and the
Workspace has not yet been defined in this agent's declaration file (this connection
corresponds to the arrow labeled “Move Percept” in the LIDA Model diagram). Therefore, this
agent can perceive red and square, but these nodes never enter the Workspace. In order to
make this connection, a PamListener must be added to the agent declaration file. This will be
done in the next task.

Task 3

Now open the <listeners> tag in the agent xml file. Add a new listener declaration at the
beginning of this section, modeling it after the other listener declarations. The declaration
should have the following tag values

listenertype is edu.memphis.ccrg.lida.pam. PamListener
modulename is PerceptualAssociativeMemory
listenername is Workspace

Save the file. Rerun the application. Now the PerceptualBuffer should display nodes “red”
and "square” when the agent perceives a red square in the environment. If these nodes are not
appearing in the PerceptualBuffer when there is a red square in the ButtonEnvironment
GuiPanel, carefully check the declaration file and make sure that the new listener declaration
has the correct information. Also note that nodes for “blue” and “circle” do not appear in the
PerceptualBuffer, even when a blue circle is present in the environment. As mentioned above,
this is because there are no feature detectors in PAM for these features yet.

Task 4

Find the declaration of the PerceptualAssociativeMemory module. Now find the
<initialtasks> tag in this module declaration. Find the redDetector task declaration.
Add a new task declaration modeled after redDetector task.

Set its tag values as follows:
name: blueDetector
tasktype: ColorDetector
ticksperrun: 3
Set its parameters as follows:
Parameter 1
name="color” type="int”, tag value is -16776961
Parameter 2
name="node” type="string”, tag value isblue
Task 5
Add another task declaration for a detection algorithm that detects a circle.

Set its tag values as follows:

name: circleDetector
tasktype: ShapeDetector
ticksperrun: 3
Set its parameters as follows:
Parameter 1
name="area” type="int”, tag value is 31
Parameter 2
name="backgroundColor” type="int”, tag value is -1
Parameter 3
name="node” type="string”, tag valueis circle

Save the file, run the application, start the simulation, and adjust the tick duration if necessary.
Now view the Perceptual Buffer GuiPanel. Notice that the blue and circle nodes appear now.
However, the agent still does not ‘press button 2’ in response to blue circles. This is because
there is no attention codelet to add these nodes (as a Coalition) to the G1obalWorkspace.

Task 6

Go to the AttentionModule declaration in the agent xml file. Find its <initialtasks> tag.
Add another task declaration similar to the RedSquareCodelet. It should have the following
tag values:

name: blueCircleCodelet
tasktype: BasicAttentionCodelet
ticksperrun: 5
Set its parameters as follows:
Parameter 1
name="nodes” type="string”, tag value isblue,circle
Parameter 2
name="refractoryPeriod” type="int” tag valueis 30
Parameter 3

name="initialActivation” type="double” tagvalueis1.0

Save the file. At this point run the application again and the agent should press button 2 in
response to blue circles.

Optional task

Those interested may examine the Java classes for the simple feature detectors used in this
project. They are located in the package myagent . featuredetectors

Advanced Exercises

Advanced Exercise 1

Logging & GUI Configuration. The LIDA Framework can be run without the GUI. In order to
do so go to the 1idaConfig.properties file and change the property 1ida.gui.enable
to false. Now the application will run the agent without the GUI.

Optionally, the Logging can be configured so that the logging handlers will send the logs to a file
or to the console. The LIDA framework uses the standard Java logging mechanism; see
java.util.logging in the standard Java platform for details on this. The framework uses
the logging.properties file defined in the 1idaConfig.properties file. You can see
an example in the configs folder of this project.

Advanced Exercise 2

This exercise will introduce you to the effects of tuning the t i cksPerRun parameter.

Launch the application, set tickDuration to 10 before starting the simulation. Observe that
several coalitions in the upper part of the Global Workspace panel appear when the red square
appears in the environment. Now, exit the application...

- Set the lidaConfig.properties to run the basicAgent.xml agent declaration
- Open the agent xml file

- Go to the RedSquareCodelet declaration inside the Attention module’s
<initialtasks>tag

- Change ticksPerRunto 50
- Change refractoryPeriodto 300

- Launch application, set tickDuration to 10. There will be relatively few coalitions in the
upper part of the Global workspace panel when the red square appears. There should
also be less coalitions being broadcast (appearing in the lower section of the same panel).

Advanced Exercise 3

In this exercise you will be creating a feature detector class and adding it, an attention codelet,
and a scheme to the agent xml declaration file.

Create your own feature detector to detect when the screen is white. Hint: copy ideas
from ShapeFeatureDetector

Add this new feature detector in the factoryData.xml as another task in the
<tasks> section

Find the ‘nodes’ parameter in the PerceptualAssociativeMemory module declaration.
Add another node here for empty

In basicAgent.xml define a task for attention codelet with a parameter for the
empty node

Create a new scheme declaration in ProceduralMemory following the format of the
existing schemes. The action of scheme can be action.releasePress

In the SensoryMotorMemory module declaration, uncomment the third action-
algorithm association, a parameter named smm. 3

Now when the agent is run it will detect the empty environment and perform the releasePress
action in response. This action releases any button that is currently pressed.

Conclusion

This concludes the exercises for the basicAgentExercises project. In these exercises we have
focused on these topics:

The framework’s GUI including the tool bar’s basic functionality and several GuiPanels
displaying the internal state of the agent.

GuiPanels for logging and for configuration files

The agent xml declaration file and how to modify it including adding a module, a listener,
feature detectors, and attention codelets.

Functionality and definition of feature detectors and attention codelets

Adding a GuiPanel to the framework’s GUI

