
   

 Soar Tutorial  
  

142 

Part IV: More Simple Problem Solving 
This part of the tutorial returns to problems that are solved through internal search. You will build Soar 
programs for a classic AI problem: Missionaries and Cannibals. Other classic AI problems, including 
Blocks World, the Eight Puzzle, and Towers of Hanoi are included in the set of demonstration programs 
that comes with the Soar release. This is very similar to the water jug problem you did initially, but has a 
few interesting extensions. You will start by building the operators, state descriptions, and goal tests that 
are required to define each problem. You will also be introduced to more of the theory of problem solving 
based on search in problem spaces. In Part V, you will learn how to modify and extend programs so that 
they use planning and learning to solve problems. 
 
This problem is challenging in a different way than playing games such as Eaters and TankSoar. Eaters 
and TankSoar are competitive games and they require fast intelligent responses to the current situation, 
which can change quickly. This problem does not have dynamic environments. However, solving this 
problem requires selecting the one appropriate operator from a set of many at each decision point. 
Selecting the correct operator is not easy given the knowledge available from the problem description. 
The problem can be solved only through trial and error, which involves searching through the space of 
possible states.  
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1. Missionaries and Cannibals Definition 
 
Problem Statement: 

Three missionaries and three cannibals come to a river. There is a boat on their bank of the river 
that can be used by either one or two persons at a time. This boat must be used to cross the river 
in such a way that cannibals never outnumber missionaries on either bank of the river (although 
cannibals can be alone on one bank). How do the missionaries and cannibals successfully cross 
the river? 

 
Once again, the first step to creating a Soar program to solve this problem is to decompose it into the 
problem space (state representation and operators) and the problem (initial state and desired state). One 
interesting aspect of this problem is that it also includes failure states. If the cannibals ever outnumber the 
missionaries, then you have failed. Below is a partial graph (it doesn’t show the last four steps) of the 
problem space, which shows that there are many illegal states that need to be avoided along the way to a 
solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3M 3C 1B ~ 0M 0C 0B 

2M 3C 0B ~ 1M 0C 1B 1M 3C 0B ~ 2M 0C 1B 2M 2C 0B ~ 1M 1C 1B 3M 2C 0B ~ 0M 1C 1B 3M 1C 0B ~ 0M 2C 1B 

3M 2C 1B ~ 0M 1C 0B 2M 3C 1B ~ 1M 0C 0B 

1M 2C 0B ~ 2M 1C 1B 2M 1C 0B ~ 1M 2C 1B 3M 0C 0B ~ 0M 3C 1B 

3M 1C 1B ~ 0M 2C 0B 

2M 0C 0B ~ 1M 3C 1B 1M 1C 0B ~ 2M 2C 1B 

2M 1C 1B ~ 1M 2C 0B 1M 2C 1B ~ 2M 1C 0B 2M 2C 1B ~ 1M 1C 0B 1M 3C 1B ~ 2M 0C 0B 

0M 2C 0B ~ 3M 1C 1B 
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Below is a list of the aspects of the problem space and problem that you will define for this problem: 
1. The state representation. For this problem this will include the positions of the missionaries, 

cannibals, and boat, relative to the river. 
2. The initial state creation rule. In this problem, all the missionaries, cannibals and the boat are on one 

bank of the river. 
3. The operator proposal rules. For this problem the operators move up to two of the missionaries 

and/or cannibals across the river with the boat. 
4. The operator application rules.  
5. The operator and state monitoring rules.  
6. The goal recognition rule. In this problem, the desired state is achieved when all missionaries and 

cannibals have crossed the river. 
7. The failure recognition rule. These are rules that detect when a state is created in which the goal 

cannot be achieved. In this problem, the failure states are whenever the cannibals outnumber the 
missionaries on one bank of the river.  

8. The search control rules. 
 
It may be tempting to try to incorporate the avoidance of failure states into the operators, so that 
operators are never proposed that lead to failure states. However that is moving an aspect of the problem 
into the problem space and requires some problem solving to determine what the conditions of the 
proposal should be. We will see in Part V how Soar can learn to rules that avoid proposing operators 
when they will lead to failure.  
 
As in the Water Jug problem, this program does not create a plan to solve the problem. Instead, when the 
program finishes, all of the missionaries and cannibals will have been moved across the river. 
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2. State Representation 
 
What are the parts of the problem that must be represented on the state?  Everything in the problem 
description is important (there are no irrelevant objects are characteristics of the objects), so an initial list 
of objects includes three missionaries, three cannibals, a river, and the boat. 
 
At any point in solving the problem, it is necessary to represent which bank of the river the boat is and the 
banks that the missionaries and cannibals are on. One important observation is that it is not necessary to 
keep track of each missionary and cannibal individually. All that is important is the number of missionaries 
and cannibals on each bank of the river. For the purposes of this problem all cannibals are the same and 
all missionaries are the same. Therefore, it is not necessary to have a separate representation of each 
missionary or cannibal and its current position. Another observation is that you never have to represent a 
state where the boat has missionaries and cannibals in it – that happens only during the application of an 
operator. The only states that need to be represented are those with the boat on one bank of the river or 
the other. Therefore the important aspects of the states that need to be represented are: 
• The number of missionaries on each bank of the river. 
• The number of cannibals on each bank of the river. 
• The bank of the river that the boat is on. 
 
There are many possible ways to represent this information using Soar’s attributes and values. Try to 
come up with one on your own before looking at the representations listed below. 
 
In creating the representations below, the two banks of the river are named left and right, with left being 
the bank of the river the missionaries and cannibals start out on. 
 
Here is one possible representation: 

(state <s> ^right-bank-missionaries 0-3 
           ^left-bank-missionaries 0-3 
           ^right-bank-cannibals 0-3 
           ^left-bank-cannibals 0-3 
           ^right-bank-boat 0/1 
           ^left-bank-boat 0/1) 

Although this representation is adequate for solving the problem, it doesn’t allow you to write general 
rules for proposing and applying operators. Using this representation, you would have to write separate 
proposal and application rules for when the boat is on each bank of the river. You would also have to 
write separate rules for moving cannibals and missionaries. When you have an attribute like right-bank-
boat, the rules in Soar cannot match the different substructures, such as right-bank and boat. By 
representing each aspect separately using structured objects, you will find that it is possible to write very 
general operator proposal and application rules.  
 
There are two obvious structured representations to choose from. One state representation has objects 
on the state for the two banks of the river, with subobjects for the missionaries, cannibals, and boat on 
that bank. To simplify later processing, an additional attribute (other-bank) can be added to the 
subobjects so that opposite bank can be matched easily. Below is a representation for the initial state:  

(state <s> ^left-bank <l> 
           ^right-bank <r>) 
(<l> ^missionaries 3 
     ^cannibals 3 
     ^boat 1 
     ^other-bank <l>)  
(<r> ^missionaries 0 
     ^cannibals 0 
     ^boat 0 
     ^other-bank <r>)  

left-bank 
 

right-bank 
 

missionaries 
 

missionaries 
 

cannibals 
 

cannibals 
 

boat 
 
 

boat 
 
 

3 3 1 0 0 0 

other-bank 
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An alternative is to make the missionaries, cannibals, and boat the primary way of structuring the data, 
with the number of entities on each bank of the river as secondary.  

(state <s> ^missionaries <m> 
           ^cannibals <c> 
           ^boat <b>) 
(<m> ^left 3 
     ^right 0) 
(<c> ^left 3 
     ^right 0) 
(<b> ^left 1 
     ^right 0) 

 
For this problem, both of these representations are sufficient and they are similar in terms of the ease of 
writing the operators and goal tests. Soar programs for both are included as demonstration programs with 
the Soar release. For the remainder of this section, the first representation will be used because it is 
closer to the physical structure of the problem. 
 

3 3 1 0 0 

left 
 

left 
 

left 
 

right 
 

right 
 

right 
 
0 

boat 
 
 

missionaries 
 

cannibals 
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3. Initial State Creation: Initialize-mac 
 
Just as in the Water Jug problem, you should create an initialization operator that names the state and 
creates all of the initial features on the state. 

sp {water-jug*propose*initialize-mac 
   (state <s> ^superstate nil 
             -^name)  
   --> 
   (<s> ^operator <o> +) 
   (<o> ^name initialize-mac)} 
 
sp {mac*apply*initialize-mac 
   (state <s> ^operator.name initialize-mac) 
   --> 
   (<s> ^name mac 
        ^left-bank <l> 
        ^right-bank <r>  
        ^desired <d>) 
   (<r> ^missionaries 0 
        ^cannibals 0 
        ^boat 0 
        ^other-bank <l>) 
   (<l> ^missionaries 3 
        ^cannibals 3 
        ^boat 1 
        ^other-bank <r>) 
   (<d> ^right-bank <dr>) 
   (<dr> ^missionaries 3 
         ^cannibals 3 
         ^boat 1)} 
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4. Operator Proposal 
 
The operators for this task move 1 to 2 individuals (missionaries or cannibals) across the river. In writing 
the proposal rules, it is easiest to break the operators into three classes:  
• move one missionary or cannibal to the other bank  

• test that there is at least one of the given type on the bank with the boat 
• move two missionaries or two cannibals 

• test that there is at least two of the given type on the bank with the boat 
• move one missionary and one cannibal together 

• test that there is at least one of each type on the bank with the boat 
 
Try to write an English description of the proposal for first operator. 
 
mac*propose*move-mac-boat*1 
If the name of the state is mac and there is one or more cannibal or 
missionary on the same bank of the river as the boat, then propose moving 
that cannibal or missionary across the river. 
 
The other operator proposals are very similar: 
 
mac*propose*move-mac-boat*2 
If the name of the state is mac and there are two or more cannibals or 
missionaries on the same bank of the river as the boat, then propose moving 
two of that type across the river. 
 
mac*propose*move-mac-boat*1 
If the name of the state is mac and there is one or more cannibal and one or 
more missionaries on the same bank of the river as the boat, then propose 
moving one cannibal and one missionary across the river. 
 
As in the Water Jug problem, you need to decide on a representation of the operator and its parameters. 
For this task, the operator parameters that make sense are: 
• The name of the operator: move-mac-boat.  
• The type of entities being moved: cannibal or missionary. 
• The number of each type of entity being moved: 1 or 2. 
The second two can be combined as a single attribute-value pair, with the type of entity being the 
attribute and the number being the value. This makes it easy to represent moving one or two entities of 
the same type as well as moving one missionary and one cannibal. To simplify later matching, you can 
also include the bank of the river that the boat is on. Also, for some of the reasoning, it will be useful to 
also represent how many different types of people are being moved, usually just one, but two when 
moving one missionaries and one cannibal. It is not necessary to include the bank of the river that the 
boat is on because it is represented in the current state. 
 
The operator representation for moving one cannibal (with the boat) from the bank with object l3 would 
be: 

(<o> ^name move-mac-boat 
     ^cannibal 1 
     ^boat 1 
     ^bank l3   
     ^types 1) 
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Now try to write the first proposal as a Soar rule. To make it easier, a good approach is to initially write a 
very specific rule for one type of operator, and then attempt to generalize it by adding variables. To get 
started, you can try writing a proposal rule for just cannibals on the left bank of the river. That would be: 
 

sp {mac*propose*move-mac-boat1  
   (state <s> ^name mac 
              ^left-bank <bank>) 
   (<bank> ^cannibals > 0 
           ^boat 1) 
--> 
   (<s> ^operator <o> + =) 
   (<o> ^name move-mac-boat 
        ^bank <bank> 
        ^boat 1 
   ^cannibals 1 
        ^types 1)} 

 
The operator is created with both an acceptable and a indifferent preference. In a later section you will 
explore adding search control. 
 
You can generalize this rule by using a variable for the bank of the river, making it so that the proposal 
applies no matter which bank the boat is on. To be safe, this requires introducing a disjunctive (<< 
left-bank right-bank >>) test for the attribute.  
 

sp {mac*propose*move-mac-boat*1  
   (state <s> ^name mac 
              ^<< right-bank left-bank >> <bank>) 
   (<bank> ^cannibals > 0 
           ^boat 1) 
--> 
   (<s> ^operator <o> + =) 
   (<o> ^name move-mac-boat 
        ^bank <bank> 
        ^boat 1 
   ^cannibals 1 
        ^types 1)} 
 

You can then further generalize the rule so that it can match against both cannibals and missionaries (but 
not the boat). This requires introducing a disjunctive (<< cannibals missionaries >>) test for the 
attribute of the bank object, and also a surrounding conjunctive test ({ << cannibals missionaries 
>> <type> }) to match the entity type to the variable <type>, which can then be used in the action. 
The final rule is: 

 
sp {mac*propose*operator*move-mac-boat1 
   (state <s> ^name mac 
              ^<< right-bank left-bank >> <bank>) 
   (<bank> ^{ << cannibals missionaries >> <type> } > 0 
           ^boat 1) 
   --> 
   (<s> ^operator <o> + =) 
   (<o> ^name move-mac-boat 
        ^bank <bank> 
        ^<type> 1 
   ^boat 1 
        ^types 1)}  

 



   

 Soar Tutorial  
  

150 

Now try to write the second proposal that moves two missionaries or two cannibals as a Soar rule. This 
requires only minimal changes to the first. The only changes are to test for more than one missionary or 
cannibal, and to increase the number being moved to 2. 
 

sp {mac*propose*operator*move-mac-boat2 
   (state <s> ^name mac 
              ^ << right-bank left-bank >> <bank>) 
   (<bank> ^{ << cannibals missionaries >> <type> } > 1 
           ^boat 1) 
   --> 
   (<s> ^operator <o> + =) 
   (<o> ^name move-mac-boat 
        ^bank <bank> 
        ^<type> 2 
   ^boat 1 
   ^types 1)} 
 

Now try to write the third proposal for moving one missionary and one cannibal. 
 
sp {mac*propose*operator*move-mac-boat11 
   (state <s> ^name mac 
              ^ << right-bank left-bank >> <bank>) 
   (<bank> ^missionaries > 0 
           ^cannibals > 0 
           ^boat 1) 
   --> 
   (<s> ^operator <o> + =) 
   (<o> ^name move-mac-boat 
        ^bank <bank> 
        ^missionaries 1 
   ^cannibals 1 
   ^boat 1 
   ^types 2)} 
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5. Operator Application  
 
The operator application rules must change the state to reflect the movement of the boat and the 
missionaries and cannibals that cross the river. As part of applying the operators, it is not necessary to 
represent that the missionaries and cannibals are in the boat, only that they change banks of the river. 
The changes that need to be made to the state are to decrease the number of missionaries and cannibals 
that are moving from the bank of the river that the boat is on, and increase the number on the bank the 
boat is moving to. Similarly, the count of the boat (0 or 1) must be changed. You might try to come up with 
a set of rules to do this, but because of the operator representation, a single rule can make changes for 
moving cannibals, missionaries and the boat from either bank of the river to the other. The rule must test 
for an augmentation of the operator, such as ^boat, ^cannibals, or ^missionaries, and then 
change the corresponding subobject on the state. The rule will fire in parallel for all entities being moved, 
including the boat. 
 
Below is an English version of the required rule. 
 
# mac*apply*move-mac-boat 
# If there is a move-mac-boat operator selected for a type and number, then  
# subtract the values of that type on the current bank and add those values  
# to the other bank. 
 
Converting this to a Soar rule is a bit tricky because of all of the variables. To simplify the conversion, we 
will start with a rule that applies the operator for moving one cannibal. Try to write this rule yourself. 
 
# mac*apply*move-mac-boat*one*cannibal 
# If there is a move-mac-boat operator selected for one cannibal, then  
# subtract one from cannibal object on the left bank and add one to the  
# cannibal object on the other bank. 

 
sp {apply*move-mac-boat*one*cannibal 
   (state <s> ^operator <o>) 
   (<o> ^name move-mac-boat 
        ^cannibal 1 
        ^bank <bank>) 
   (<bank> ^cannibal <bank-num>  
           ^other-bank <obank>) 
   (<obank> ^cannibal <obank-num>) 
   --> 
   (<bank> ^cannibal <bank-num> - 
                     (- <bank-num> 1)) 
   (<obank> ^cannibal <obank-num> - 
                      (+ <obank-num> 1))} 
 

The above rule tests the operator to ensure that one cannibal is being moved (<o> ^cannibals 1) 
and to detect the bank of the operator. It then matches the number of cannibals on that bank, matching 
<bank-num>, via the other-bank attribute, matching <obank-num>. The actions of the rule modify the 
number of cannibals on the left bank by rejecting the current value (^cannibal <bank-num> -), and 
by asserting the new value which is the original value minus one (^cannibal (- <bank-num> 1)). 
Arithmetic operations such as addition, subtraction, and multiplication are done in Soar using prefix 
notation where the operation is given first followed by the operands.  
 
One concern you might have about the above rule is that it will apply multiple times if there is more than 
one cannibal on the left bank of the river, moving each cannibal, one by one to the other bank. However, 
that will not happen because immediately after this rule fires (multiple times in parallel for each entity 
being moved) the rule that proposed the operator will no longer match, causing the operator to be 
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removed. The operator proposal rule will no longer match because it tested the number of cannibals on 
the left bank of the river, which is changed by the rule. In addition, the boat will move from one bank to 
another by at the same time, providing a second reason for the proposal rule not to match. Thus, the 
operator will terminate immediately after the above rule fires. 
 
The next step is to generalize this rule so it can apply to moving 1 or 2 cannibals. This requires replacing 
the test for ^cannibals 1 on the operator to ^cannibals <number> and then using <number> in the 
actions to subtract from the current  
 

sp {apply*move-mac-boat*cannibal 
   (state <s> ^operator <o>) 
   (<o> ^name move-mac-boat 
        ^cannibal <number> 
        ^bank <bank>) 
   (<bank> ^cannibal <bank-num>  
           ^other-bank <obank>) 
   (<obank> ^cannibal <obank-num>) 
   --> 
   (<bank> ^cannibal <bank-num> - 
           (- <bank-num> <number>)) 
   (<obank> ^cannibal <obank-num> - 
            (+ <obank-num> <number>))} 
 

The final generalization is to replace the test for the ^cannibals attribute of the operator with a more 
general test that matches cannibals, missionaries, or the boat to a variable <type>. That variable is used 
to match the appropriate object on the state. This rule will now fire multiple times to move the boat as well 
as any cannibals or missionaries that are moving. 
 

sp {apply*move-mac-boat 
   (state <s> ^operator <o>) 
   (<o> ^name move-mac-boat 
        ^{ << missionaries cannibals boat >> <type> } <number> 
        ^bank <bank>) 
   (<bank> ^<type> <bank-num>  
           ^other-bank <obank>) 
   (<obank> ^<type> <obank-num>) 
   --> 
   (<bank> ^<type> <bank-num> - 
                   (- <bank-num> <number>)) 
   (<obank> ^<type> <obank-num> - 
                    (+ <obank-num> <number>))} 

 

1 is replaced by <number> so 
that rule applies to moving 
any number of cannibals 

<type> matches the type of 
object being moved  
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6. State and Operator Monitoring  
 
Below are three rules that monitor the selected operator and the state (one rule for each bank that the 
boat is on). 
 

sp {monitor*move-mac-boat 
   (state <s> ^operator <o>) 
   (<o> ^name move-mac-boat 
        ^{ << cannibals missionaries >>  <type> } <number>) 
   --> 
   (write | Move | <number> | | <type>)} 

 
sp {monitor*state*left 
   (state <s> ^name mac 
              ^left-bank <l> 
              ^right-bank <r>) 
   (<l> ^missionaries <ml> 
        ^cannibals <cl> 
        ^boat 1) 
   (<r> ^missionaries <mr> 
        ^cannibals <cr> 
        ^boat 0) 
   --> 
   (write (crlf) | M: | <ml> |, C: | <cl> | B ~~~   |  
                 | M: | <mr> |, C: | <cr> |  |)} 
 
sp {monitor*state*right 
   (state <s> ^name mac 
              ^left-bank <l> 
              ^right-bank <r>) 
   (<l> ^missionaries <ml> 
        ^cannibals <cl> 
        ^boat 0) 
   (<r> ^missionaries <mr> 
        ^cannibals <cr> 
        ^boat 1) 
   --> 
   (write (crlf) | M: | <ml> |, C: | <cl> |   ~~~ B |  
                 | M: | <mr> |, C: | <cr> |  |)} 

 
When you run your program, you will observe that your program runs forever and also sometimes visits 
states that are illegal according to the problem statement. 
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7. Desired State Recognition 
 
The next step in creating a program to solve missionaries and cannibals is creating a rule that recognizes 
when a desired state has been achieved. Although a rule specific to the given problem can easily be 
written, it might be better to write one that is more general. For example, you might assume that the 
desired state will always have some number of missionaries, cannibals, on one bank of the river. 
The action of the rule should be to print out a message that the problem has been solved and halt. 
 
Write an English version of this rule. 
 
# mac*detect*goal*achieved 
# If the name of the state is mac and the number of missionaries and  
# cannibals on one bank of the river in the desired state matches the number  
# of missionaries and cannibals on the same bank in the current state, write  
# that the problem has been solved and halt. 
 
Translating this into Soar is relatively straightforward. Try to write your own before looking below. 

 
sp {mac*detect*state*success 
   (state <s> ^desired <d> 
              ^<side> <ls>) 
   (<ls> ^missionaries <m> 
         ^cannibals <c>) 
   (<d> ^{ << right-bank left-bank >> <side> } <dls>) 
   (<dls> ^missionaries <m> 
          ^cannibals <c>) 
   --> 
   (write (crlf) |The problem has been solved.|) 
   (halt)} 

 
If you run this with the earlier rules, the program should halt at some point; however, it is likely that it will  
visit a failure state and thus solved the problem incorrectly. 
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8. State Failure Detection 
 
The next step is creating a rule that recognizes when a failure state has been encountered. According to 
the problem statement, a failure state is one where the cannibals out number the missionaries on one 
bank of the river. One condition that is often forgotten is to test that the number of missionaries is greater 
than zero. The action for this rule is to print out a message that the problem has failed to be solved, and 
then halt. Write an English version of this rule. 
 
# mac*detect*goal*failure 
# If the name of the state is mac and there are more cannibals than  
# missionaries, and there is at least one missionary, on one bank of the  
# river, then write that the problem has failed to be solved, and halt. 
 
Translating this into Soar is relatively straightforward. Try to write your own before looking below. 
 

sp {mac*evaluate*state*failure*more*cannibals 
   (state <s> ^desired <d> 
         ^<< right-bank left-bank >> <bank>) 
   (<bank> ^missionaries { <n> > 0 } 

                 ^cannibals > <n>) 
--> 
   (write (crlf) |The problem has failed.|) 
   (halt)} 

 
Try running your complete program. Invariably the program will halt with failure because of the high 
likelihood of encountering a failure state.  
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9. Search Control: Undoing the Last Operator 
 
In the current problem, when a failure is reached, the program halts. One possibility is to have the 
program start over again from the initial state. But if you were working on the problem, you would 
probably notice that you reached an illegal state, and you would go back one step by undoing the last 
operator and try to find another path. In order to undo the last operator, you must remember what it was. 
You can use some of the work you did on the Water Jug where you created a memory to avoid undoing 
the last operator to prefer to undo an operator when a failure state is achieved. 
 
Given the representation of the move-mac-boat operator in working memory, you will have to write two 
rules to record the last operator, one that handles instances of the operator that move a single type of 
entity, and a second that handles instances of the operator that move one missionary and one cannibal. 
The action of these rules should create an augmentation of the state with information on the operator that 
is being applied. Try to write English versions of these rules. 
 
mac*apply*move-mac-boat*record*last-operator*types*1 
If an operator is selected to move one type of entity, then create an 
augmentation of the state (last-operator) with the bank of the boat, the type 
of entity being moved, the number, and that there is one type being moved. 
 
mac*apply*move-mac-boat*record*last-operator*types*2 
If an operator is selected to move two types of entity, then create an 
augmentation of the state (last-operator) with the bank of the boat and that 
there is two types being moved. 
 
These can then be converted into Soar rules: 

 
sp {mac*apply*move-mac-boat*record*last-operator*types*1 
   (state <s> ^name mac 
              ^operator <o>) 
   (<o> ^name move-mac-boat 
        ^bank <bank> 
        ^{ << missionaries cannibals >> <type> } <n> 
        ^types 1) 
   --> 
   (<s> ^last-operator <o1>) 
   (<o1> ^types 1 
         ^bank <bank> 
         ^type <type> 
         ^number <n>)} 
 
sp {mac*apply*move-mac-boat*record*last-operator*types*2 
   (state <s> ^name mac 
              ^operator <o>) 
   (<o> ^name move-mac-boat 
        ^boat <bank> 
        ^types 2) 
   --> 
   (<s> ^last-operator <o1>) 
   (<o1> ^types 2 
         ^bank <bank>)} 
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The rule to remove old records only has to test if the bank of the boat in the record of the last operator 
does not match the current bank that the boat is on because each time an operator is applied the boat 
changes banks. 
 
mac*apply*move-mac-boat*remove*old*last-operator 
If the move-mac-boat operator is selected and the boat in the last-operator is not equal to the bank of the 
current boat, remove the last-operator structure. 
 
This can then be converted into Soar a rule:  
 

sp {mac*apply*move-mac-boat*remove*old*last-operator 
   (state <s> ^name mac 
              ^operator <o> 
              ^<lr-bank>.other-bank <o-bank> 
              ^last-operator <lo>) 
   (<lo> ^bank <obank>) 
   --> 
   (<s> ^last-operator <lo> -)} 

 
Once you add these rules, you can now add rules that undo an operator whenever one leads to a failure 
state. However, you must first modify the rule that detects failure so that it doesn’t halt the program, but 
just augments the state with failure: 
 
# mac*detect*goal*failure 
# If the name of the state is mac and there are more cannibals than  
# missionaries, and there is at least one missionary, on one bank of the  
# river, then augment the state with failure true. 
 
Translating this into Soar is relatively straightforward. 
 

sp {mac*evaluate*state*failure*more*cannibals 
         (state <s> ^desired <d> 

         ^<< right-bank left-bank >> <bank>) 
   (<bank> ^missionaries { <n> > 0 } 
      ^cannibals > <n>) 
   --> 
   (<s> ^failure <d>)} 

 
Note that this rule only fires when there is an illegal state and it is not part of the application of an 
operator. Thus, it will retract and remove the failure augmentation automatically if the state changes and 
there is no longer an illegal state. 
 
Now you can write rules that prefer operators that undo the last operator when there is failure. Just as 
before, this will require two rules, one for moving a single type of entity, and one that moves one 
missionary and one cannibal. Below is a general English version for both rules. 
 
# mac*select*operator*prefer*inverse*failure 
# If the name of the state is mac and the current state is a failure state  
# and the last operator is the inverse of a proposed operator, then prefer  
# that operator. 
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sp {mac*select*operator*prefer*inverse*failure*types*2 
   (state <s> ^name mac 
              ^operator <o> + 
              ^failure <d> 
              ^last-operator <lo>) 
   (<o> ^name move-mac-boat 
        ^<type> <number> 
        ^types 1)   
   (<lo> ^types 1 
         ^type <type> 
         ^number <number>) 
   --> 
   (<s> ^operator <o> >)} 
 
sp {mac*select*operator*prefer*inverse*failure*types*1 
   (state <s> ^name mac 
              ^operator <o> + 
              ^failure true 
              ^last-operator.types 2) 
   (<o> ^types 2) 
   --> 
   (<s> ^operator <o> >)} 

 
After you have added these rules, your program will be able to solve the problem; however it will probably 
take a very indirect path to the solution. One reason is that after an operator has been successfully 
applied and generated a valid state, the inverse of that operator will often be selected, undoing the 
operator and wasting both operator applications. To avoid this, you can add two more rules that avoid 
undoing the last operator when the state is not a failure state. 
 
# mac*select*operator*avoid*inverse*not*failure 
# If the name of the state is mac and the current state is not a failure  
# state and the last operator is the inverse of a proposed operator, then  
# avoid that operator. 
 

sp {mac*select*operator*avoid*inverse*not*failure*1 
   (state <s> ^name mac 
              ^operator <o> + 
             -^failure true 
              ^last-operator <lo>) 
   (<o> ^types 1 
        ^<type> <number>) 
   (<lo> ^types 1 
         ^type <type> 
         ^number <number>) 
   --> 
   (<s> ^operator <o> < )} 
 
sp {mac*select*operator*avoid*inverse*not*failure*2 
   (state <s> ^name mac 
              ^operator <o> + 
             -^failure true 
              ^last-operator <lo>) 
   (<o> ^types 2) 
   (<lo> ^types 2) 
   --> 
    (<s> ^operator <o> < )} 
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After you have added these final rules, your program should solve the problem much quicker. However, 
you will notice that there is still some inefficiency. For example, at the initial state, it is possible for the 
program to attempt to apply the same operator to the state after it has failed with moving one or both the 
other missionaries. The figure below shows the initial state and the three successive states that it can 
cycle among. The problem is that only the most recent operator for a current state is recorded. It is not 
possible to associate all prior operators that applied to a state because the state is continually changing. 
In the next Part of the tutorial, you will learn how to use impasses and substates so that your programs 
can use look-ahead planning and solve this type of problem more directly. 

 3M 3C 1B ~ 0M 0C 0B 

2M 3C 0B ~ 1M 0C 1B 1M 3C 0B ~ 2M 0C 1B 3M 2C 0B ~ 0M 1C 1B 
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