
Part VII: Reinforcement Learning 
Let us quickly review the type of operator preferences you have used thus far in the 
tutorial.  First, acceptability (+): only acceptable operators are considered for application.  
Acceptable preferences must be further described as either relatively differentiated or 
indifferent.  Differentiated preferences (such as > and <) establish a relative ordering from 
which Soar will choose the most preferred operator.  If all preferences are labeled as 
indifferent (=), Soar’s random operator choice can be further affected by numerical 
indifferent parameters. 

Reinforcement learning (RL) in Soar allows agents to alter behavior over time by 
dynamically changing numerical indifferent preferences in procedural memory in response 
to a reward signal.  This learning mechanism contrasts starkly with chunking.  Whereas 
chunking is a one-shot form of learning that increases agent execution performance by 
summarizing sub-goal results, RL is an incremental form of learning that probabilistically 
alters agent behavior.    

1. Reinforcement Learning in Action 
Before we get to the nuts and bolts of RL, consider first an example of its effects.  Left-Right 
is a simple agent that can choose to move either left or right.  Unbeknownst to this agent, 
one direction is more preferable than the other.  After deciding its destination, the agent 
will receive a “reward,” or feedback regarding how good a decision it made.  In this case, it 
will receive a reward of -1 for moving left and +1 for moving right.  Using RL, the agent will 
learn quickly that moving right is preferable to moving left. 

1.1 The Left-Right Agent 
Given the description above, let’s begin creating the Left-Right agent.  This agent will have a 
move operator that will choose between moving left and right.  Because the agent does not 
know a priori which direction is better, the agent will be indifferent as to the preference 
between these actions. As you are unfamiliar with the particulars of RL agent design, either 
type the following code into your favorite editor or open the VisualSoar left-right project in 
the Agents directory: 

Initialization 

The agent stores directions and associated reward on the state 

sp {propose*initialize-left-right 
   (state <s> ^superstate nil 
             -^name) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name initialize-left-right) 
} 
 
sp {apply*initialize-left-right 
   (state <s> ^operator <op>) 
   (<op> ^name initialize-left-right) 
--> 
   (<s> ^name left-right 
        ^direction <d1> <d2> 
        ^location start) 
   (<d1> ^name left ^reward -1) 
   (<d2> ^name right ^reward 1) 
} 



 

 

Move 

The agent can move in any available direction.  The chosen direction is stored on the state. 

sp {left-right*propose*move 
   (state <s> ^name left-right 
              ^direction.name <dir> 
              ^location start) 
--> 
   (<s> ^operator <op> +) 
   (<op> ^name move 
         ^dir <dir>) 
} 
 
sp {left-right*rl*left 
   (state <s> ^name left-right 
              ^operator <op> +) 
   (<op> ^name move 
         ^dir left) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
sp {left-right*rl*right 
   (state <s> ^name left-right 
              ^operator <op> +) 
   (<op> ^name move 
         ^dir right) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
sp {apply*move 
   (state <s> ^operator <op> 
              ^location start) 
   (<op> ^name move 
         ^dir <dir>) 
--> 
   (<s> ^location start - <dir>) 
   (write (crlf) |Moved: | <dir>) 
} 
 

Reward 

When an agent chooses a direction, it is afforded the respective reward. 

sp {elaborate*reward 
   (state <s> ^name left-right 
              ^reward-link <r> 
              ^location <d-name> 
              ^direction <dir>) 
   (<dir> ^name <d-name> ^reward <d-reward>) 
--> 
   (<r> ^reward.value <d-reward>) 
} 

 

 



 

Conclusion 

When an agent chooses a direction, the task is over and the agent halts. 
 

sp {elaborate*done 
   (state <s> ^name left-right 
              ^location {<> start}) 
--> 
   (halt) 
} 

 

You will notice a number of unexpected elements in the code above, namely the rl rules for 
the move operator and the reward elaboration.  The reasons for these components will be 
made clear in later sections. 

1.2 Running the Left-Right Agent 
Start the Soar Debugger and load the source for the Left-Right agent.  By default, 
reinforcement learning is disabled.  To enable this learning mechanism, enter the following 
commands: 

rl --set learning on 
indifferent-selection –-epsilon-greedy 
 

Note that these commands have been added to the _firstload file of the included left-right 
project.  The first command turns learning on, while the second sets the exploration policy 
(more on this later.) 

Next, click the “Step" button. This will run Soar through the first cycle.  You will note 
initialization has been chosen, no surprise.  In the debugger, execute the following 
command: 

print --rl 
 

This command shows you the numerical indifferent preferences in procedural memory 
subject to RL updating.  The output is presented here: 

left-right*rl*right  0.  0  
left-right*rl*left  0.  0 
 

This result shows that the preference for the two operator instances after 0 updates have a 
value of 0.  Click “Step” two more times, then execute print --rl again, to see RL in action: 

left-right*rl*right  1.  0.3  
left-right*rl*left  0.  0 
 

After applying the move operator, the numerical indifference value for the rule associated 
with moving right has now been updated 1 time to a value of 0.3.  Note that since the move 
preferences are indifferent, and thus the decision process is made probabilistically, your 
agent may have decided to move left instead of right.  In this case the left-right*rl*left 
preference would have been updated 1 time with a value of -0.3. 

Now click the “Init-soar” button.  This will reinitialize the agent.  Execute print --rl.  Notice 
that the numeric indifferent values have not changed from the previous run.  Storing these 
values between runs is the method by which RL agents learn.  Run the agent 20 more times, 
clicking the “Init-soar” button after each halted execution.  You should notice the numeric 



indifference value for moving right increasing, while the value for moving left decreases.  
Correspondingly, you should notice the agent choosing to move left less frequently. 

2. Building a Learning Agent 
Conversion of most agents to take advantage of reinforcement learning takes part in three 
stages: (1) use RL rules, (2) implement one or more reward rules, and (3) enable the 
reinforcement learning mechanism.  As an example, we will update the basic Water-Jug 
agent from Tutorial Part I to take advantage of RL functionality.  The modified code can be 
found in the Agents directory. 

2.1 RL Rules 
Rules that are recognized as updateable by the RL mechanism must abide by a specific 
syntax: 

sp {my*proposal*rule 
   (state <s> ^operator <op> + 
              ^condition <c>) 
--> 
   (<s> ^operator <op> = 2.3) 
} 
 

The name of the rule can be anything and the left-hand side (LHS) of the rule, the 
conditions, may take any form.  However, the right-hand side (RHS) must take the 
following form: 

(<s> ^operator <op> = number) 
 

To be specific, the RHS can only have one action, asserting a single numeric indifferent 
preference, and number must be a numeric constant value (such as 2.3 in the example 
above).  Any other actions, including proposing acceptability of the operator, must take 
place in a separate rule.  

Recalling the Water Jug problem, our goal will be to have the agent learn the best 
conditions under which to empty a jug (of particular volume), fill a jug (of particular 
volume), and pour one jug (of particular volume) to another.  Thus we will modify the 
empty, fill, and pour operators to afford them RL updatable rules. 

Modifying the Water-Jug agent’s rules to make them compatible with RL will take two 
steps: (a) modify the existing proposal rules and (b) creating new RL rules.  Modification of 
the existing proposal rule is trivial: simply remove the “=” (equal) sign from the operator 
preference assertion action on the RHS: 

sp {water-jug*propose*empty 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^contents > 0) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name empty 
        ^empty-jug <j>)} 
 
sp {water-jug*propose*fill 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^empty > 0) 
--> 
   (<s> ^operator <o> +) 



   (<o> ^name fill 
        ^fill-jug <j>)} 
 
 
 
 
sp {water-jug*propose*pour 
   (state <s> ^name water-jug 
              ^jug <i> { <><i><j> }) 
   (<i> ^contents > 0 ) 
   (<j> ^empty > 0) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name pour 
        ^empty-jug <i> 
        ^fill-jug <j>)} 
 

To be clear, these modified rules propose their respective operators with an acceptable 
preference.  Next, we will write RL rules whose conditions detect these acceptable 
preferences and compliment with numeric indifferent preferences. 

The second step of agent modification can be much more laborious.  In order for RL to 
provide feedback for each action in each state of the problem, it must have an RL rule for 
each state-action pair.  In the Water Jug problem, a state can be represented by the volume 
of each of the jugs and the action (empty, fill, or pour) with one of the two jugs.  As an 
example, one RL rule for the emptying the 3-unit jug (currently storing 2 units) when the 5-
unit jug has 4 units could be written as follows: 

sp {water-jug*empty*3*2*4 
   (state <s> ^name water-jug  
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty  
         ^empty-jug.volume 3) 
   (<j1> ^volume 3  
         ^contents 2) 
   (<j2> ^volume 5  
         ^contents 4) 
--> 
   (<s> ^operator <op> = 0) 
} 
 

For simple agents, like the Left-Right agent above, enumerating all state-action pair as RL 
rules by hand is plausible.  However, the Water-Jug agent requires (3 * 2 * 4 * 6) = 144 RL 
rules to fully represent this space.  Since we can express these rules as the output of a 
simple combinatorial pattern, we will use the Soar gp command to generate all the rules we 
need: 

gp {rl*water-jug*empty 
   (state <s> ^name water-jug 
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty 
         ^empty-jug.volume [3 5]) 
   (<j1> ^volume 3 
         ^contents [0 1 2 3]) 
   (<j2> ^volume 5 
         ^contents [0 1 2 3 4 5]) 
--> 
   (<s> ^operator <op> = 0) 



} 
 
 
 
 
 
 
gp {rl*water-jug*fill 
   (state <s> ^name water-jug 
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name fill 
         ^fill-jug.volume [3 5]) 
   (<j1> ^volume 3 
         ^contents [0 1 2 3]) 
   (<j2> ^volume 5 
         ^contents [0 1 2 3 4 5]) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
 
 
gp {rl*water-jug*pour 
   (state <s> ^name water-jug 
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name pour 
         ^empty-jug.volume [3 5]) 
   (<j1> ^volume 3 
         ^contents [0 1 2 3]) 
   (<j2> ^volume 5 
         ^contents [0 1 2 3 4 5]) 
--> 
   (<s> ^operator <op> = 0) 
} 
 

Note that had the rules required a more complex pattern for generation, or had we not 
known all required rules at agent design time, we would have made use of rule templates 
(see the Soar Manual for more details). 

2.2  Reward Rules 
Reward rules are just like any other Soar rule, except that they modify the reward-link 
structure of the state to reflect reward associated with the agent’s current operator 
decision.  Reward values must be stored on the value element of the reward attribute of the 
reward-link identifier (state.reward-link.reward.value). 

Of significant note, Soar does not remove or modify structures within the reward-link, 
including old reward values.  It is the agent’s responsibility to maintain the reward-link 
structure to reflect proper feedback to the RL mechanism.  In most cases, this means 
reward rules will be i-supported, such as to create non-persistent reward values.  If an 
attribute remains on the reward-link structure, such as through an o-supported rule, the 
reward will count multiple times in the reinforcement learning. 

For the Water-Jug agent, we will provide reward only when the agent has achieved the goal.  
This entails making a minor modification to the goal-test rule: 

sp {water-jug*detect*goal*achieved 
   (state <s> ^name water-jug 
              ^jug <j>  



              ^reward-link <rl>) 
   (<j> ^volume 3 ^contents 1) 
--> 
   (write (crlf) |The problem has been solved.|) 
   (<rl> ^reward.value 10) 
   (halt)} 
 

Now load this code into the debugger and run it a few times (if loading your own code, 
remember to enable reinforcement learning).  After about five runs you should find that the 
agent has adopted a near optimal strategy.  At any point during the runs you can execute 
the print --rl command to see the numeric indifferent values of the RL rules generated by 
the gp command.  You can right-click and print any of these rules to see their conditions. 

3. Further Exploration 
Consider the following output from a run (watch level 0) of the learning left-right agent 
from section 1: 

run 
Moved: right 
This Agent halted. 
An agent halted during the run. 
 
init-soar 
Agent reinitialized. 
 
run 
Moved: right 
This Agent halted. 
An agent halted during the run. 
 
init-soar 
Agent reinitialized. 
 
run 
Moved: left 
This Agent halted. 
An agent halted during the run. 
 

You should notice that at run 3 moving left is selected.  By this point moving right has an 
obvious advantage in numerical preference values, thus why is left chosen?  The answer 
lies with exploration policies. 

There are times in learning when exploration of operations currently considered less-than-
preferred may lead you down a useful path.  Soar allows you to tune your level of exploring 
these alternate paths using the indifferent-selection command. 

In the Soar Debugger, type “indifferent-selection --stats” (sans quotes).  The result should 
look like this: 

Exploration Policy: epsilon-greedy  
Automatic Policy Parameter Reduction: off   
 
epsilon: 0.1  
epsilon Reduction Policy: exponential  
epsilon Reduction Rate (exponential/linear): 1/0   
 
temperature: 25  
temperature Reduction Policy: exponential  
temperature Reduction Rate (exponential/linear): 1/0 
 



This command prints the current exploration policy as well as a number of tuning 
parameters.  There are five exploration policies: boltzmann, epsilon-greedy, softmax, first, 
and last.  You can change the exploration policy by issuing the following command (where 
“policy_name” should be replaced with one of the policies above): 

indifferent-selection --policy_name 
 

This tutorial will only discuss the epsilon-greedy policy.  For information on the other 
policies you should read the Soar manual.  Epsilon greedy is a policy common within 
reinforcement learning experimentation to allow parameter-controlled exploration of 
operators not currently recognized as most preferred.  This policy is controlled by the 
epsilon parameter.  The policy is summarized as such: 

With ( 1 - epsilon ) probability, the most preferred operator is to be 
chosen.  With epsilon probability, a random selection of all 
indifferent operators is made. 
 

When Soar is first started, the default exploration policy is softmax.  However, the first time 
RL is enabled, the architecture automatically changes the exploration policy to epsilon-
greedy, a policy more suitable for RL agents.  The default value of epsilon is 0.1, dictating 
that 90% of the time the operator with greatest numerical preference value is chosen, 
while the remaining 10% of the time a random selection is made from all acceptable 
proposed operators.  You can change the epsilon value by issuing the following command: 

indifferent-selection --epsilon <value> 
 

Acceptable values for epsilon are numbers between 0 and 1 (inclusive).  You may note, by 
the definition, that a value of 0 will eliminate the chance of exploration and a value of 1 will 
result in a uniformly random selection. 

With this explanation, you should experiment with different values of epsilon during 
different runs in the agents discussed in this tutorial. 
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