Arithmetic Project for Soar
John E. Laird
3/1/2012

This program supports arithmetic and subtraction between two multi-digit numbers. It formulates the problem in multiple columns. It does not use any math functions and has a table of all single digit addition facts (for addition and one subtraction strategy) and tables of simple subtraction facts and addition by ten to single digits (for a second subtraction strategy). These facts can be converted to a semantic memory access (in the application of computer-result).

Each primitive operator is relatively simple; without complex proposal conditions, control rules, lots of control flags or complex conditional operator applications. The actual execution trace is sometimes a bit tricky – especially for subtraction.
[bookmark: _GoBack]
The project supports the automatic generation of random 3 column addition and subtraction problems which are created in generate-problem. The project will execute N of these (set as the value of ^count in initialize-arithmetic).

The project checks that all answers are computed correctly by using Soar's math functions (computed in elaborations/verify and finish-problem) if an incorrect answer is computed, it is printed out and Soar halts (but this should never happen).

The two subtraction strategies differ in what initial facts they assume. One of the subtraction strategies assumes the same knowledge as addition (the sum of two single digit numbers and the resulting carry), but involves remapping that knowledge so that it is appropriate for subtraction. For example it knows that if 7 is subtracted from 6 that the answer is 9 and there must be a borrow from the column to the left.

The second subtraction strategy assumes that the system knows how to subtract any single digit (0-9) from the numbers 0-18, and that it has facts to add ten to any single digit (0-9).

The actual trace of a strategy arises from the available operator applications and impasses that arise. For example, in the second strategy, if a larger number is being subtracted from a smaller number, there is an operator no-change impasse because no fact is available for that situation. This is the standard American approach to subtraction. The key rules for this are in process-column/compute-result.soar

The only differences between the two strategies are the available facts and a single rule in process-column that applies the process-column operator by accessing the facts (process-column*apply*compute-result*subtraction). There are rules that only are used by the second strategy (in the compute-result substate), but there is no explicit control to invoke them and they do not have to be disabled during addition or the other subtraction strategy.

Works with chunking (learn --on).

Key data structures:
 arithmetic
 add10-facts - all facts for adding 10 to 0-9
 digit1 - 0-9
 digit-10 - digit + 10
 facts - all of the facts about single digit arithmetic
 digit1
 digit2
 sum - 0-9 - the single digit result
 carry-borrow - 0/1 if the result is 10 or greater
 operation addition/subtraction
 subtraction-facts - all facts for subtracting a digit from 0-18
 same structure as facts above
 arithmetic-problem - holds the complete definition of the problem
 one-column - the right-most columns where the ones are held
 linked-list to rest of columns
 column t - used to test if column exists - makes chunking happy
 digit1 0-9
 digit2 0-9
 carry-borrow - 0/1 - based on the computation on the prior column
 next-column - the column to the left of the current - 10x
 (nil if no next column)
 result - the result of the digits and carry-borrow
 count - number of problems to solve
 digits - all digits 0-9

All of the operators in this system:
Initialize-arithmetic
 Names the problem (^name arithmetic)
 Creates the digits 0-9 that are used in generating problems
 Initialize the count for the number of problems to solve
 Can also define a specific problem to solve (example rule commented out)
 If specific problem defined, it will be solved <count> number of times
Generate-facts
 Preloads working memory with all of the arithmetic facts (should not be
 necessary with semantic memory)
Generate-problem
 Creates the arithmetic problem (<s> ^arithmetic-problem)
 Generates individual digits, the operation, column by column.
 Right now it only does addition problems
Process-column - compute the result for a column
 get-digit1 - retrieve digit1 from column and move it onto state
 if there is a carry-borrow, recursively add/subtract it to column digit1
 to compute final digit1
 write-digit1 - return the newly computed digit1 and possible
 carry-borrow(if digit1 is 9 for + or 0 for -)
 get-digit2 - retrieve digit2 and move it onto the state
 compute-result - compute result and carry-borrow from digit1 and digit2 by
 using the facts - will replace with semantic memory lookup
 carry-borrow - transfer carry-borrow to next column
 new-column - creates a new column if there is a carry-borrow at the
 left-most column for an addition problem
 write-result - move result to the current-column
Next-column - when a result has been computed for a column, go to the next column
Finish-problem - when there is a result for a column with no next-column
 (nil), print out result, decrement count
Stop-arithmetic - if count =0 the halt

