
The Soar 9 Tutorial
John E. Laird

University of Michigan
June 12, 2014

Updated for Soar 9.4.0

(the Soar-RL Tutorial is currently a separate document from this six-part tutorial)

 Soar Tutorial

2

Acknowledgments

This tutorial is the culmination of work by many people, and has been refined and expanded significantly
over several years. Soar 8, based on Bob Wray's thesis work with contributions from Randy Jones and
Mike vanLent, was a significant architectural departure from Soar 7. Eaters and TankSoar and the Soar
Debugger have evolved with each version of Soar. Visual Soar significantly eases the development and
debugging of Soar Productions.

Below we recognize the individuals who have contributed to the Soar Tutorial:

Soar 8: Randy Jones, Bob Wray, Karen Coulter
Soar Debugger: Mazin Assanie, Doug Pearson
Eaters: Randy Jones, Clare Bates Congdon, Scott Wallace, Jonathan Voigt
Tanksoar: Mike vanLent, Mazin Assanie, John Duchi, Jonathan Voigt
Visual Soar: Brad Jones, Brian Harleton, Andrew Nuxoll
Documentation and other Tools: Karen Coulter, Clare Bates Congdon, Bob Marinier,

Jonathan Voigt, Alex Roper, Taylor Lafrinere

 Soar Tutorial

3

Introduction

This is a guide for learning to create software agents in Soar, version 9. It assumes no prior knowledge of
Soar or computer programming.

The goals of this document are:
• Introduce you to the basic operating principles of Soar.
• Teach you how to run Soar programs and understand what they do.
• Teach you how to write your own Soar programs.

This is about the nuts and bolts of writing Soar programs, but not about the theory behind Soar. For that,
you should read Chapter 3 of the Soar Manual or the Gentle Introduction to Soar: 2006 Update,
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf.

This tutorial takes the form of a sequence of lessons. Each lesson introduces concepts one by one and
gives you a chance to use them by creating Soar agents. Each lesson builds on the previous ones, so it is
important to go through them in order. To make the best use of this tutorial, we recommend that you read
the tutorial, do the exercises, run the programs, and write your own Soar agents. The programs are
available as part of the standard Soar installation. Please use the most recent version. Although the
tutorial is long, you should be able to work through it quickly.

What is Soar? We call Soar a unified architecture for developing intelligent systems. That is, Soar
provides the fixed computational structures in which knowledge can be encoded and used to produce
action in pursuit of goals. In many ways, it is like a programming language, albeit a specialized one. It
differs from other programming languages in that it has embedded in it a specific theory of the appropriate
primitives underlying reasoning, learning, planning, and other capabilities that we hypothesize are
necessary for intelligent behavior. Soar is not an attempt to create a general purpose programming
language. You will undoubtedly discover that some computations are difficult or awkward to do in Soar
(such as complex math) and they are more appropriately encoded in a programming language such as C,
C++, or Java. Our hypothesis is that Soar is appropriate for building autonomous agents that use large
bodies of knowledge to generate action in pursuit of goals.

The tutorial comes in six parts. Part I introduces Soar using a simple puzzle task called the Water Jug to
introduce the basic concepts of Soar. This is the classic type of toy problem that people in AI now rail
against as being completely unrepresentative of real world problems. Maybe true, but it is simple and
easy to understand. After working through Part I, you should be able to write simple Soar programs. Part
II uses a Pacman like game called Eaters to introduce interaction with external environments. Part III
uses a grid-based tank game called Tank-Soar and introduces Soar’s subgoaling mechanism as it is used
for task decomposition. Part IV uses Missionaries and Cannibals problems to further explore internal
problem solving and search. Part V uses Missionaries and Cannibals along with the Water Jug to
introduce look-ahead planning and learning. Finally, Part VI gives an overview of creating a more
complex Soar system for playing Quake.

Soar has its own editor, called VisualSoar, which we highly recommended for use in developing Soar
programs. VisualSoar is part of the standard installation and is also available from the Soar homepage.

 Soar Tutorial

4

Part I: Simple Soar Programs
Throughout this tutorial, you will be writing and running Soar programs for simple tasks. In this part, you
will be writing simple programs that do not use Soar subgoaling or chunking mechanisms.

1. Installing Soar

Before reading further in the tutorial, you should install Soar and its associated software on your computer
so that you can run the examples and exercises. Using your favorite browser, visit the Soar Getting
Started page: http://sitemaker.umich.edu/soar/getting_started. Follow the directions on that page for
installation. This will allow you to install three downloads that include with the most recent release of
Soar, the Soar Debugger, the Eaters game, the TankSoar game, and VisualSoar.

2. Building a Simple Soar Agent Using Rules

All of the knowledge in a Soar agent is represented as if-then rules. In Soar, rules are called productions,
and we will use the terms interchangeably. Rules are used to select and apply things called operators,
and much of this tutorial will be describing how rules and operators fit together. But before we get to
operators, we are going to learn about writing rules for a very simple agent – one that just prints “Hello
World.” Before we dive into rules, you will need to start up Soar so that we can run the programs you
write.

2.1 Creating a Soar Agent and Using the Soar Debugger
To start Soar, double click (or whatever is appropriate on your platform) on the Start Soar Debugger
(Java) file in the folder where you installed Soar, or in Windows, click the Start button, select Programs,
find Soar 8.6.2 and click Start Soar Debugger. After Soar has started, you will have a new window on
your screen. This window is the Soar Debugger, which is shown below. This program will be used to run
all of your Soar programs. Your version may look somewhat different, depending on the features added
since this document was written.

The large window to the left is called the Interaction window (above). During Soar execution, all
debugging information and print statements will be displayed in the Interaction window. Just below the
interaction window is the Command Box for typing in user commands. The windows on the right display
information that you will find useful later.

Interaction window

Command Box

 Soar Tutorial

5

When the Soar Debugger starts, a default agent entitled ‘soar1’ is created. The name of the agent can be
seen on the title bar. The bottom of the window contains buttons for single stepping, running, or stopping
an agent. When it is time to run your Soar programs, commands can either be entered by typing them
into the command box, or by clicking the buttons

 Soar Tutorial

6

2.2 Hello-World Rule: English
The first Soar agent we will examine prints “Hello World”. In general, an operator should perform this type
of activity, but in order to ease you slowly into Soar, we start with a single rule. Below is a simple rule
written in English.

hello-world:
If I exist, then write “Hello World” and halt.

Soar cannot directly interpret English, so you must write rules in Soar’s very stylized and precise
language. A major component of the rest of this tutorial is teaching you that language.

Soar works by testing the ”if” parts of rules (“If I exist”). These ”if” parts are called conditions. If all of the
conditions of a rule are true in the current situation, the ”then” parts, or actions, of the rule (“write ‘Hello
World’ and halt”) are executed, which usually involves making changes to working memory, which holds
all of the dynamic data structures in a Soar program. Executing the actions of a rule is called firing the
rule. To determine if the conditions are true, Soar compares them to data structures in working memory.
Working memory defines the current situation, which for an agent consists of its perception of its world,
results of intermediate calculations, active goals, and operators.

The figure below shows a high level view of Soar. On the right are all of the underlying architectural
processes that select operators, create states, learn new rules, etc. These are all written in C and you will
not be changing them at all (so don’t worry if you don’t know C). In the upper center is the rule memory,
which contains all of the rules. Rules encode the long-term knowledge in Soar and adding them is the
way Soar is programmed – you do not change the way Soar creates states or learns, but you create
rules. Working memory is where short-term information is stored and your rules will create and test
structures in working memory. In contrast to C or Java, which have programs that are executed
sequentially, Soar has rules that are matched and executed in parallel. C and Java have data structures,
variables, etc. while Soar has working memory. While these other languages have a combination of local
and global data, Soar has no local data – everything in working memory is global. Working memory
consists of a graph structure of individual elements. The elements are created by rules as well as from
sensors (not shown in the diagram), and the Soar architecture creates a limited set of working memory
elements (the core part of states) automatically. Working memory is matched against rule memory to
determine which rules will fire. When rules fire, they can make changes to working memory, as well as
performing simple actions such as printing messages in the interaction window.

Working Memory

Rule Memory

Decision
Making

State
Creation

Learning

…

 Soar Tutorial

7

2.3 Loading and Running Hello-World
Before going through the nitty-gritty of Soar syntax, let’s see an example of Soar executing the hello-
world rule. In order to execute the hello-world rule, it must be loaded from a file into Soar’s rule memory.
You can load in the rules from a file via the Interaction window by either clicking the “source” button or by
using the File menu at the top left (you can also type the source command directly into the interaction
window, but for that you need to know the path to the file).

To use the File menu, click on the toolbar as shown in the figure below.

The following menu will pop up; select Load source file…

Alternatively, click on the “source” button at the bottom of the interaction window. In both cases, a menu
to select the file will pop up, such as below (your menu might have a different set of files available). You
can navigate in this menu to get to the correct directory (<soardir>/Agents/) and then select the file you
want to load (hello-world-rule.soar).

When rules are loaded into Soar, an “*” is printed for each rule. When the file has loaded, you will see the
word “source” followed by the location of the file in the interaction window,

Click on this menu

 Soar Tutorial

8

At this point you can type run, or click on the run button in the bottom left of the interaction window. The
first thing that happens is that Soar automatically creates the initial state, S1 (but this is not shown in the
interaction window, but is shown in the window on the right where the state S1 is printed). All of working
memory is organized as states, so even before any rules fire, a state is created. After the state is created
the rule matches (details explained later) and it fires, performing its actions, printing “Hello World” and
then halting.

Soar always automatically creates a state (S1) for all data.

“Hello World” printed out by rule followed by halt.

Start executing Soar by typing run in the
command window or clicking on the run button.

Trace of run command being executed.

 Soar Tutorial

9

2.4 Hello-World Rule: Soar
As stated earlier, Soar has a stylized and precise language for writing rules. Here is the Soar rule for
hello-world.

sp {hello-world
 (state <s> ^type state)
-->
 (write |Hello World|)
 (halt)}

Every rule starts with the symbol “sp”, which stands for “Soar production.” The remainder of the rule body
is enclosed in curly braces: “{“ and “}”. The body consists of the rule name, followed by one or more
conditions (the “if” part), then the symbol “-->“, and then one or more actions (the “then” part). Below is a
template for rules:

sp {rule*name
 (condition)
 (condition)
 …
 -->
 (action)
 (action)
 …}

The name of the rule can be any arbitrary combination of letters, numbers, dashes (“-“), and asterisks
(“*”). The one exception is that a name cannot be a single letter followed by a number such as S1 or O45.
Soar reserves those names for its own purposes. The specific name is irrelevant to the operation of the
rule, but you should always pick a name that is meaningful. Following the name, there must be at least
one condition. A condition tests for the existence (or absence) of data in working memory. If all of the
conditions match, then the rule will fire and all of the actions are performed. Most actions create new
working memory elements or remove existing working memory elements. Some actions create
preferences for selecting operators (more on that later), while others perform functions such as writing
text to the screen or halting as in hello-world.

In the next several sections we will explore the structure of conditions and actions and explain what all of
the special symbols, such as <s> and ^type, mean. Before doing that, we need to first look at the
structure of working memory in more detail.

sp stands for “Soar
production” and
starts every rule.

The “{“ starts body of a rule. The name of the rule immediately follows the “{“.
The name can include letters, numbers, “-“, and “*”.

This is the if part of
the rule (condition).

The --> separates
the if and then parts
of the rule.

These are the then parts of the rule (actions).

The “}” ends the rule.

… means additional conditions can follow.

… means additional actions can follow.

 Soar Tutorial

10

2.5 Working Memory
Working memory contains all of a Soar agent’s dynamic information about its world and its internal
reasoning. It contains sensor data, intermediate calculations, current operators and goals. In Soar, all of
working memory is organized as graph structures in states. Thus, every working memory element is
connected directly or indirectly to a state symbol. For the first agents you will build, there will be a single
state. Below is a simple example of what the structure of working memory might be like if the agent were
representing that there were two blocks, one on top of the other, which is then on a table as shown in the
figure below.

Below is a graphic picture of the working memory structures that Soar creates automatically for every
agent – so although not shown in the above figure, S1 would have these additional structures.

As a graph, there are nodes (or vertices) and links (or edges). The nodes, such as S1, B1, B2, A, and
blue, are connected by links, such as block, table, name, color, and superstate. Soar has
two kinds of nodes: identifiers and constants. The nodes that can have links emanating from them (they
are non-terminal nodes), such as S1 and B1, are called identifiers, while the others (they are terminal
nodes), such as state, blue, block, and nil, are called constants.

In the example above, S1 is the identifier for the state. All of the identifiers symbols are created
automatically by Soar and consist of a single letter followed by a number. Although I2 and I3 in the
lower figure do not have any links emanating from them, they are identifiers and can have additional
substructures added later. In contrast, the symbol state is not an identifier and cannot have links
emanating from it. The links are called attributes in Soar and are prefaced by a “^”. Only identifiers have
attributes. In the bottom figure, S1 has three attributes: superstate, io, and type. I1 has two:
output-link and input-link.

B
A

^table

^block

^block

S1 State identifier

Attribute

Value

^ontop

^ontop

^name A

blue

block

B

yellow

block

Table

gray

table

^name

^name

^color

^color

^color

^type

^type

^type

B1

B2

T1

^type

^io

^superstate

state

nil

^input-link

^output-link

S1 I1

I2

I3

State identifier

Attributes

Value

 Soar Tutorial

11

Working memory is actually built of individual elements which are triples of an identifier, an attribute, and
value, and where the value is that node pointed to by the attribute. The value can be either a constant or
an identifier. In the example above, the symbols nil, I1, state, I2, and I3 are all values. It is these
triples that you add and delete when writing Soar programs.

There are five working memory elements in the figure above:

S1 ^superstate nil
S1 ^io I1
S1 ^type state
I1 ^output-link I2
I1 ^input-link I3

This is the minimal contents of working memory, and as your programs get larger and more complex,
they will manipulate many more working memory elements.

A collection of working memory elements that share the same first identifier is called an object. For
example, the three working memory elements that have S1 as their identifier are all part of the state
object. The working memory elements that make up an object are called augmentations. Although we call
them objects, they consist of the individual working memory elements that share the same identifier.
Objects are usually written as a list of the augmentations surrounded by parentheses. The first item in the
list is the identifier that is shared by all of the augmentations, followed by the pairs of attributes and values
for each augmentation. The objects for the above working memory elements are:

(S1 ^io I1 ^superstate nil ^type state)
(I1 ^input-link I3 ^output-link I2)

An individual augmentation can also be written in this form:
(S1 ^type state)

A working memory object usually represents something about the world, such as a block, a wall, a piece
of food, or a cell on the board. The individual augmentations represent properties (such as color, size, or
weight), or relations with other objects (such as on top of, behind, or inside).

Soar can be used for many different tasks, and for each different task, working memory will contain
descriptions of the task objects. The working memory elements for the blocks would be as follows:

Working memory usually also contains objects that are only conceptual things and do not have an
identifiable physical existence, such as state s1, which organizes other objects, relations, and properties.
The exact representation of objects is up to you, the designer of a Soar program.

Soar does not require any declarations of the possible attributes and constants. In fact, some Soar
programs generate new attributes and constant values as they execute. The Soar editing and
development tool, VisualSoar, does require declarations for the structure of working memory elements,
and those declarations are used to check for errors in your rules but they are not used by Soar when it is
executing a program.

B
A

(s1 ^block b1 ^block b2 ^table t1)
(b1 ^color blue ^name A ^ontop b2 ^type block)
(b2 ^color yellow ^name B ^ontop t1 ^type block)
(t1 ^color gray ^name Table ^type table)

 Soar Tutorial

12

2.6 Hello-World Rule: Soar Details
You now know enough to return to the first example rule. The original English version included the test
“If I exist”
Remember that when every Soar agent is created, it has (s1 ^type state) in working memory, which
signifies in someway that the agent does exist. Thus, you can test for the presence of that structure in
working memory to determine if the agent exists. The obvious condition to write would be (s1 ^type
state). However, s1 is just an arbitrary symbol and might not be the identifier of that state every time
the agent is run.1 Thus, we need a test that there is an identifier, but without testing a specific value. That
is exactly what a variable does – it matches any symbol in working memory with the only constraint being
that all occurrences of the same variable in a rule match the same symbol. A variable can match an
identifier, an attribute, or a value, depending on its position in a condition – if it is first in a condition it will
match the identifier, second the attribute, and third the value. A variable is a symbol surrounded by “<”
and “>”, such as <s>. The exact symbol used in the variable (such as “s”) is irrelevant but should be
picked to be meaningful to you.

Putting these pieces together gives: (<s> ^type state). That is almost correct, but in Soar, every rule
must start by matching a structure in a state, and to remind you of this, the first condition of every rule
must start with the word “state”.

sp {hello-world
 (state <s> ^type state)
-->
 (write |Hello World|)
 (halt)}

The original text for the rule’s actions was: then write “Hello World” and halt.
The rule’s first action prints “Hello World” in the Interaction window. Vertical bars, “|”, mark constants with
special characters. These constants can contain any characters, which allows you to print spaces, upper
and lower-case letters. The second action is a special command in Soar that halts the agent. From this
simple example, you should be able to write your own rules that print out different messages for Soar.

If you wish to try this out yourself, you have two choices. The first is to use VisualSoar. VisualSoar is the
Soar development environment and it lets you develop and manage Soar programs. It has its own
documentation and tutorial and can be found at the Soar web pages. Also, the Water-Jug problem that is
presented later in this tutorial contains an explanation of how to use VisualSoar. Although it will initially
slow you down to learn VisualSoar, it will be worth it in the long run.

If you want to use a text editor, almost any will do, such as Word, WordPerfect, Wordpad, Notepad, or
Emacs. In this editor, create a new file hello-world.soar in your new folder/directory. Make sure the file
ends in “.soar”. This may be difficult to do in Wordpad or Notepad, which automatically add “.txt” to the
end of a file, but this will be important for the Eaters and Tanksoar tasks. If you are having trouble with
this in Windows, go to the Settings item off the Start menu. Select Folder Options and the pick the File
Type tab. Select "New Type…" and in the pop-up window define the soar type. You need to fill in "soar"
(without quotes) under the "Associated extension" and select "text/plain" under "Content Type."
Whenever you save the file, make sure you save it as a text file with linefeeds. Soar cannot handle
formatted text and text without linefeeds.

1 S1 will always be the identifier of the first state, but that is an artifact of the way Soar is implemented.

This condition tests that there is a state The first condition always
starts with “state”

A variable that matches any identifier in this position

Prints the following items
to the Interaction Window Halts the agent

Vertical bars surround text

 Soar Tutorial

13

3. Building Simple Agents Using Operators
In this section, you will learn how to use rules to select and apply operators. Operators perform actions,
either in the world or internally in the “mind” of an agent. In the Water Jug problem, they “pour” water
between jugs in the mind of the agent. In Eaters, the operators will create commands to move the eater
around the board. There could also be operators to remember uneaten food, count food, or remember
where walls are that only make changes to the working memory of the Eater. Operators in a Tic Tac Toe
program would mark X’s or O’s on the board. Operators for a soccer program would probably include
move, turn, kick the ball, send messages to teammates, interpret messages from teammates, choose a
tactic or strategy, and so on.

Because operators perform actions, they are the locus of decision making. They are where knowledge is
used to decide what to do (or not to do). Thus, Soar’s basic operation is a cycle in which operators are
continually proposed, selected, and applied. Rules fire to propose and apply operators, while the decision
procedure selects the current operator. This may seem restrictive; however, it forces you to separate out
where decisions are being made (proposal and selection) and where actions are being performed
(application).

For Soar to use operators, they must first be created in working memory by proposal rules. Proposal rules
test features of the state to ensure that the operator is appropriate and then they create a representation
of the operator in working memory along with an acceptable preference for that operator. The preference
is a way of telling the architecture that this operator is a candidate for selection. For simple operators, the
representation in working memory is often just a name of the operator. For example, in section 3.1 we will
create an operator to print “Hello World” and that operator will just have the name hello-world in working
memory. More complex operators can also contain representations of parameters. For example, when we
encode the water jug problem in Soar, one operator will fill a jug with water and it will have a parameter
as to which jug should be filled. At an extreme, the representation of an operator can specify exactly
which changes should be made to working memory when it is applied.

Once the operator is selected, rules that apply the operator will match and perform whatever actions are
appropriate by creating or removing working memory elements. If the chosen operator is represented in
working memory as just a name, rules that explicitly test that name will be required to apply that operator.
If the operator already includes a representation of what changes need to be made, then very general
rules can be used to apply the operator that can also be used with other operators. Thus, working
memory acts as an intermediary for actions by being the place where alternative operators are proposed,
one is selected, and then rules apply the operator by making changes to the state.

Propose Operators
(rules)

Apply Operator
(rules)

Select Operator
(decision procedure)

 Soar Tutorial

14

3.1 Hello World Operator: English Version
To demonstrate a very simple operator, you will now write an operator instead of a single rule to print
“Hello World”. Operators allow you to have an action considered in multiple situations (rules that propose
the operator), allow multiple reasons for selecting an action (rules for selecting operators), and allow
multiple ways for doing it (rules that apply the operator). For printing “Hello World”, an operator is not
necessary because there are no alternatives, but as soon as other actions are possible and choices must
be made, operators become necessary.

To use an operator, we need two rules: one to propose the operator and one to apply it:

Propose*hello-world:
If I exist, propose the hello-world operator.

Apply*hello-world:
If the hello-world operator is selected, write “Hello World” and halt.

The first rule proposes the hello-world operator, and the second performs its actions after the operator
has been selected. Notice that the first rule only proposes the hello-world operator. As described earlier,
an operator is selected by Soar’s decision procedure, which collects together proposed operators and
selects one.

To see this operator run, you can either create a new agent and then destroy your previous agent (this is
done on the same pull down menu that was used to create an agent), or you can remove all of the
existing rules in your agent by using the “excise --all” command, which removes all of the rules
from memory and initializes Soar. Next, load in the hello-world-operator file using source. To see the
individual productions fire, you can modify the “watch” level. There are many different watch levels: and
watch level 3 (and higher) includes traces of production firings. Go ahead and set the highest level:
watch 5. You can use the “Watch 5” button at the bottom of the interaction window or use the Debug
Level entry in the menu bar at the top. Then click the run button.

The interaction window allows you to trace the execution of Soar at many different levels (decisions,
phases, production firings, working memory changes), but selectively view the trace by expanding and
collapsing the trace (using the “+” and “-” items on the left of the trace) and setting filters. Make sure you
have the “tree view,” which is set under the layout tab in the top tool bar. A standard practice is to do a full
trace (Watch 5), but only view decisions by collapsing the trace. If an error arises, or you want to look at
the behavior in more detail, you can expand the trace. The button at the lower right corner of the
interaction window allows you to toggle between “collapse” and “expand” easily. You can then control the
level of the trace by using the “filters” button that is next to the collapse/expand button. This allows you to
view the trace at a high level and only dive into the details when necessary.

After typing run, expand the “run” and “1: O: O1 (hello-world)” lines by clicking on the “+” signs next to
them. The trace shows that propose*hello-world fires first to propose the operator. The operator hello-
world (O1) is then selected (by the decision procedure). After hello-world is selected, apply*hello-world
fires and performs the actions of the operator by printing out “Hello World” and halting.

 Soar Tutorial

15

Operator proposed

Operator selected

Operator applied

 Soar Tutorial

16

3.2 Hello-World Operator: Soar Version
In this case, there is a one-to-one mapping of the English rules to Soar rules. The condition of
propose*hello-world is the same as the condition for the original hello-world rule. The difference is in the
action, where propose*hello-world proposes the hello-world operator. A rule proposes an operator by
creating an acceptable preference for the operator. An acceptable preference is a statement that an
operator is as a candidate for selection. The rule below proposes the hello-world operator:

sp {propose*hello-world
 (state <s> ^type state)
-->
 (<s> ^operator <o> +)
 (<o> ^name hello-world)}

The first action creates an acceptable preference for a new operator (which is added to working memory)
and the second action creates a working memory element that augments the operator with its name.

A preference looks just like other working memory elements except that it has a fourth item: the type of
preference, which in this case is “+”. The identifier of the preference is <s>, which means that the
identifier matched to <s> in the condition is used in creating the action. For example, if working memory
contained (s1 ^type state), then when this rule fired the preference would begin with (s1
^operator. The value of the preference, <o>, is a new variable that did not occur in the condition. When
new variables appear in actions, Soar automatically creates a new identifier and uses it for all
occurrences of that variable in the action. For example, if o1 is the identifier created for <o>, then (s1
^operator o1 +) and (o1 ^name hello-world) are added to working memory. For variables in
actions, such as <o>, a different identifier is created each time a rule fires.

Additional rules may create preferences to compare operators. The decision procedure selects an
operator based on all the created preferences. If a single operator is proposed, that operator is selected.
In this case, propose*hello-world fires creating a single acceptable preference for o1, and then the
decision procedure selects o1 to be the current operator and adds (s1 ^operator o1) to working
memory. Note that this working memory augmentation does not have the “+” following the value. Only the
decision procedure can add such an operator augmentation for a state to working memory (while
proposal rules can add acceptable preferences for operators that differ by ending with the “+”).

Once the operator is selected, apply*hello-world should fire.

sp {apply*hello-world
 (state <s> ^operator <o>)
 (<o> ^name hello-world)
-->
 (write |Hello World|)
 (halt)}

This rule has exactly the same actions as hello*world, but with conditions that test that the operator hello-
world has been selected. The first condition tests that some operator has been selected. We cannot
include a specific identifier for the value (such as o1) because the exact value of the identifier can be
different each time we run the program, so a variable, in this case <o>, is used.

The second condition tests that some object in working memory has name hello-world. The rule will only
match if both <o>’s match the same identifier (such as o1). This is true for all variables in Soar; if the
same variable shows up multiple times in the conditions of a rule, the rule will not match (and fire) unless
all occurrences of the variable in the rule match the same symbol in working memory. In this case, they
both match o1, and this rule fires.

If the same variable is used in multiple rules, it can match completely different identifiers or constants –
that is, the identity of variables only matters within a rule. The exact symbols used in a variable are
irrelevant, although as a general convention, <s> is usually used to match state identifiers and <o> is
usually used to match operator identifiers.

<s> in the action is replaced
by the identifier matched by
<s> in the condition

Test that an operator
has been selected

<o> is new in the action and is
replaced by a new, unique identifier

+ indicates that this is an
acceptable preference

<o> is replaced by the same
identifier in all actions

Test that the selected
operator has name hello-
world

Both occurrences of <o> must
match the same identifier

 Soar Tutorial

17

3.3 Examining Working Memory
We can get an even more detailed look at Soar’s processing by examining the data structures in working
memory. You can print out working memory in the Interaction Window using the print command. To print
out all of the attributes and values that have s1 as the identifier, first click in command box below the
interaction window, and type print s1 followed by the “Enter” key. The debugger also has additional
windows to the right of the Interaction Window that display common structures, such as the current state,
the current operator, etc. The topmost window on the right should already show the state. This window
has tabs for examining different structures in working memory. You can modify the command in these
windows by typing in a new command (such as replacing “print s1” with “print s1 –d 2”), or you can add
new tabs or create a new window that executes different commands. You do this by right clicking on a
blank part of the window, and a menu will appear that let’s you create a new window or a new tab.

You now see all of the attributes and values that have S1 as their identifier. The attributes io,
superstate, and type are created automatically for the state before the program starts to run. The
operator attribute is created when the hello-world operator (o1) is selected. Only the selected operator
has a working memory element without the following “+”. In addition to the selected operator, the
acceptable preference for the operator is there, marked with the "+". If there were additional operators
proposed with acceptable preferences, there would be additional working memory elements with the
operator attribute with the ids of the operators followed by the “+”, but for a given state there is only one
working memory element with the operator attribute without the “+”, which signifies the selected operator.
The attributes are ordered alphabetically when they are printed, but that is just to make it easier to find a
specific attribute.

What you typed (s1 or S1
will work)

+ means an acceptable
preference for an operator

O1 is selected operator

 Soar Tutorial

18

We can examine more of the structure of o1 using the print command. This time, select the operator tab
or type p o1. The letter p means “print.” Almost all commands in Soar also have one or two-character
shortcuts.

Operator o1 has an augmentation with attribute name and value hello-world. We can also examine
the augmentations of some of the other values. I1 is the value of the ^io attribute, which stands for
input-output. To see more about input and output, print I1. However, instead of using the print or p
command, you can use the mouse to print information about I1. (If you don’t have a mouse, just use
print.) To do this, type print s1 again as before and move the cursor over I1 in the upper right window,
then press the right mouse button. A menu will appear that has a list of commands: print, preferences,
WMEs, productions, and run. Move the mouse over the print command and click the left button once.

The information for I1 now appears in the Interaction window to the left where the trace is displayed.

 Soar Tutorial

19

There are two attributes of io: input-link and output-link. The input-link is where an agent’s
sensory information is available in working memory. The output-link is where action commands must be
created for the agent to move in its world. Using the mouse, explore the structure of the input-link (I2).
You can also try out some of the other commands available through the mouse, although we will work our
way through them later in the tutorial.

You now know the basic structure of rules and operators in Soar. You should be able to create your own
agents that print out simple messages with operators.

Rules augment the value of the
output-link with motor commands

Sensory information is added to the
value of the input-link

^type

^io

^superstate

state

^input-link

^output-link

S1 I1

I3

I2

 Soar Tutorial

20

3.4 An Introduction to VisualSoar
To create your own Soar programs, you can use almost any editor. We recommend VisualSoar because
it has internal support for creating Soar programs. VisualSoar can be found in the same place that the
Soar debugger was found. On launch, a fairly blank window entitled VisualSoar will pop-up. At the top,
click File | New Project… and you will see a new pop-up window entitled New Agent. In the new window
under Agent Name type “water-jug” (without the quotes) and under Agent Path, click Browse (if you
receive a “no disk” error, ignore it by simply clicking continue) and locate the folder to which you want to
save the project to. When this is done, click New.

You will see a new window on the left that should contain 5 things in the form of a tree. This is called the
operator window. At the root is the name of your project, and the four things below it are the default files
that are automatically created. The specifics of these four files will be explained as the tutorial proceeds.
It is files like these that will contain the rules you write for an agent. The rules will be grouped into different
files and file types depending on their function. It is from this window that you will control the way the rules
are grouped together. The actual grouping of rules in VisualSoar is actually completely arbitrary to Soar
but will make maintaining and debugging your code much easier for you. Due to this arbitrariness, do not
feel that you can create an error by grouping your rules wrong.

One of the toughest parts of writing Soar code is visualizing the tree-like structure of working memory.
VisualSoar has a structure called the Datamap for describing working memory structure. In some ways, it
is like making type definitions in other languages. To examine the Datamap, right-click on the root of the
tree entitled ‘water-jug’ and click on Open Datamap in the pop-up window. Doing this displays the
hierarchical structure of the working memory of your agent in the Datamap water-jug window. VisualSoar
not only lets you visually construct what memory should look like, it also lets you run tests to make sure
your code follows the proper structure, automatically finding spelling mistakes, misplaced structures, and
so on. You can close the Datamap water-jug window by clicking on the [x] in its top-right corner.

Throughout the rest of Part 1 of this manual you will write code to solve the water jug problem. Write this
code into your Soar editor as you go. Once you get the hang of it, try and write the next step in the code
before you look at it (make sure to double-check it with our code of course).

The root of the tree and the
name of your project, click
here to open the Datamap

 This is the Operator window

This is the Feedback window

This is the Datamap for
water-jug

 Soar Tutorial

21

4. Creating Agents to Solve the Water Jug Problem
This part of the tutorial will teach you how to build Soar programs that solve problems through internal
problem solving. You will build a Soar program for a classic AI problem: The Water Jug. Other classic AI
problems, including Blocks World, the Eight Puzzle, Missionaries and Cannibals, and Towers of Hanoi
are included in the set of demonstration programs that comes with the Soar release. The Soar programs
you develop will solve these problems through search and the manipulation of internal data structures.
You will start by building the operators, state descriptions, and goal tests that are required to define the
problem. You will also be introduced to more of the theory of problem solving based on search in problem
spaces. In Part V, you will learn how to modify and extend to your programs so that they use planning
and learning to solve problems. If you run into problems debugging your programs, you might want to skip
ahead to Part II, Section 5.3, which contains details on debugging commands for Soar.

4.1. Water Jug
Water Jug Problem Statement:

You are given two empty jugs. One holds five gallons of water and the other holds three gallons.
There is a well that has unlimited water that you can use to completely fill the jugs. You can also
empty a jug or pour water from one jug to another. There are no marks for intermediate levels on the
jugs. The goal is to fill the three-gallon jug with one gallon of water.

The first step in formulating a problem is determining the space of possible states that the problem solver
can be in. The space of states, or problem space, is determined by the objects that are available to be
manipulated (the two jugs) and their possible values (0-5 gallons full). A problem is then defined as an
initial state that the problem solver starts at, (in this case two empty jugs) and a set of desired states (any
state where the three-gallon jug has one gallon of water). Problem solving consists of starting at the initial
state, then searching for a desired state by applying operators, which transform one state into another.
For the water jug problem, the operators are fill a jug, empty a jug, and pour from one jug to the other.

In addition to the knowledge required to formulate the problem, knowledge can be used to select which
operator to apply at each state. In the water jug, you might have knowledge that specifies never emptying
a jug immediately after it has been filled. In Soar, this knowledge is often called search control
knowledge, because operator selection is the locus of all decision making in Soar. It is the one place
where multiple alternatives can be proposed, compared and evaluated before a selection is made. An
important part of Soar’s design is that it makes it possible to separate all of the problem formulation
knowledge from the knowledge that is used to control the search.

At an abstract level, a trace of the problem solving starts with the creation of the initial state and is
followed by the selection and application of operators. To represent the states in the water jug problem,
we will have two values: the amount of water in the five gallon jug, and the amount of water in the three
gallon jug. For example: 5:0,3:0 will represent that the 5 gallon container has 0 gallons of water, and the 3
gallon container has 0 gallons of water. Below is a trace of the optimal solution for the problem showing
the states and the operators that are applied to each state.

(5:0,3:0) Fill 3 gallon jug
(5:0,3:3) Pour 3 gallon jug into 5 gallon jug
(5:3,3:0) Fill 3 gallon jug
(5:3,3:3) Pour 3 gallon jug into 5 gallon jug
(5:5,3:1)

The rest of this section will take you through all of the steps of representing the problem in Soar, including
determining the representation of the states in working memory, creating the initial state, representing the
operators in rules (and working memory), and so on.

 Soar Tutorial

22

4.2 State Representation
For tasks that involve interaction with the outside world, much of the state structure is determined by what
comes in via perception. For the water jug problem, we could hook up Soar to a water jug simulator (or
real world robot) and have it issue commands to pour water into and out of jugs, but to simplify learning
Soar, we will have Soar solve the problem through the manipulation of internal data structures. .
Moreover, this will prepare you for planning, where your program will need to create an internal
representation of the problem even if there is an external world.

What are the parts of the problem that must be represented on the state? There are really two types of
information: dynamic information that changes during problem solving, such as how much water is in
each jug, and static information that doesn’t change, such as the size of each jug.

So one state representation might include:
• The amount of water each jug currently holds.
• The amount of water each jug can hold.
You can combine these together by having the volume of the jug as an attribute with the value being the
current contents. Under this scheme, the initial state would look something like:

(state <s> ^five-gallon-jug-contents 0
 ^three-gallon-jug-contents 0)

This is a very compact representation; however you will have to write very specific rules for proposing and
applying operators. You will need one set of rules to propose the operators for the five-gallon jug and one
for the three-gallon jug.

A more general approach would be to represent each jug as an object that had two attributes:
• The amount of water each jug currently holds (^contents).
• The amount of water each jug can hold (^volume).
In this scheme, the initial state would look something like this.

(state <s> ^jug <j1>
 ^jug <j2>)
(<j1> ^volume 5
 ^contents 0)
(<j2> ^volume 3
 ^contents 0)

Note that jug is an attribute that can have multiple values at the same time. We call this a multi-valued
attribute. Multi-valued attributes allow you to represent sets of objects, such as the set of two jugs.

Using this representation, you can write one set of rules for manipulating both jugs. Although this
representation is sufficient for defining and solving the problem, as you will see later, the rules to propose
operators can be simplified if you add an attribute for the amount of water that can be added to a jug to fill
it (^empty). As you will see later, the value of this augmentation can be computed dynamically using
state elaboration rules that test the volume and contents augmentations and subtract the volume from the
contents. Thus, states will include the following structures:
• An object for each jug (^jug).
• The amount of water each jug can hold (^volume).
• The amount of water each jug currently holds (^contents).
• The amount of empty space available in each jug (^empty).
Although this representation is sufficient, one more working memory structure is extremely useful: a
description of the task that is being attempted, in this case water-jug. By having some description of the
task, the rules we create can be specific to that task and easily combined with rules from other tasks
without interference. Thus, a common Soar convention is to label the state with information about the task
being attempted. The simplest approach is to have a ^name attribute, where the value is the name of the
task. For some tasks, other information is useful, but this will be sufficient for the water jug task.
• The task name (^name water-jug)

 Soar Tutorial

23

4.3 Initial State Creation: The initialize-water-jug Operator
In order for Soar to start on a problem, the structures of initial state must be in working memory. For tasks
involving interaction with an external environment, much of the state will be created by the perceptual
information that comes in from sensors. That information would be created on the input-link structure of
the state. But for this task, we are assuming there is no external environment, so the initial state must be
created by rules that you add to the system.

Thus, the first step is to define an operator that will create the initial state. By using an operator instead of
a single rule, the act of initialization is a choice that can be controlled – that is, the operator to initialize the
problem will be proposed and a decision will be made whether to do it. If other tasks are possible, the
agent can decide which task will be attempted by using control knowledge to pick among the different
initialization operators.

The first step in creating an operator is to write down the proposal rule in English.

Type the English versions of the proposal and application rules for the initialize-water-jug operator. These
versions will be documentation, so we have to tell Soar to ignore them. You can do this by starting each
line with the pound-sign (“#”). Soar ignores lines that start with a pound sign.

In Soar, the name of the rule can be almost any string of characters, but it is a good idea for it to be a
meaningful summary of the purpose of the rule. A useful convention is to split the name into parts
separated by asterisks (“*”). The first part is the task, the second part is the function (propose, apply,
elaborate), and the third is the name of the operator. There may be additional parts for more details of
what the rule does.

As with every operator, we must define two types of rules: one to propose the operator and one to apply
the operator. This operator should be proposed only at the beginning, before any task is selected. Thus,
the proposal should be:

water-jug*propose*initialize-water-jug
If no task is selected,
then propose the initialize-water-jug operator.

Writing this rule in Soar is a challenge given what you know so far. How can you test that no task has
been selected or that no jugs are defined? In Soar it is possible to test for the absence of working
memory elements by preceding the attribute with “-“. Every rule in Soar must have at least one positive
condition, so you still need to test that the state exists and in this case we use (^superstate nil).

sp {water-jug*propose*initialize-water-jug
 (state <s> ^superstate nil)
 -(<s> ^name)
 -->
 (<s> ^operator <o> +)
 (<o> ^name initialize-water-jug)}

VisualSoar – The purpose of this production is to propose the operator that will initialize the water-jug. If
you look at the operator window in VisualSoar you will see that the file at the bottom is titled “initialize-
water-jug.” This is created automatically when you created the water-jug project because a standard
practice is to use an initialization operator for a new task. Either double-click on that file or right-click on
the file and click Open Rules. This will open up a rule editor in which you will see two rules already
partially written. The initialization written above is a very standard one, and because of this VisualSoar
automatically creates a template of it for you (it is the first rule at the top). It may look a little different
because VisualSoar uses a few shortcuts that you will learn later, feel free to leave it how it is or change it
to the way it is above, it will not matter. Leave this rule window open.

Test that there is no task.

 Soar Tutorial

24

Just a reminder that the order of the conditions don’t matter except that the first condition must be a
positive test of the state. Thus, there is no difference between the above rule and one where the test for
the absence of the jug comes before the absence of the name. Soar analyzes the rule and automatically
reorders the conditions in order to improve the efficiency of matching the rules.

The second condition will match only if there is not any working memory element on the state with
attribute name. The condition does no test for a value, because it doesn’t matter what the value is. You
could include variables in the value position (such as <name>) if you wanted, and that would not change
the meaning of the rule.

All the conditions test attributes of the same object (the state), and you can simplify the rule by combining
these conditions (just as VisualSoar did) into a single structure where the identifier (<s>) is followed by
the attributes:

sp {water-jug*propose*initialize-water-jug
 (state <s> ^type state
 -^name)
 -->
 (<s> ^operator <o> +)
 (<o> ^name initialize-water-jug)}

Soar automatically translates this structure into the one above.

To apply the initialize-water-jug operator, we need another rule. The initialization application rule adds the
name to the state and creates the jugs with contents of 0. The rule needs to add working memory
elements for the initial values of the jugs and their attributes.

water-jug*apply*initialize-water-jug
If the initialize water-jug operator is selected,
then create an empty 5 gallon jug and an empty 3 gallon jug.

sp {water-jug*apply*initialize-water-jug
 (state <s> ^operator <o>)
 (<o> ^name initialize-water-jug)
 -->
 (<s> ^name water-jug
 ^jug <j1>
 ^jug <j2>)
 (<j1> ^volume 5
 ^contents 0)
 (<j2> ^volume 3
 ^contents 0)}

This rule does not include the creation of the ^empty attribute – it will be created by another rule that
dynamically computes it based on the volume and contents (see Section 4.5).

VisualSoar – In the initialize-water-jug rule window you will notice that VisualSoar has attempted to write
this rule for you also. The application of initializing the water-jug is not as standard as the proposal and
VisualSoar is not able to initialize all of the attributes that this project will need. Modify the second rule in
the rule window to match the rule above.

Now, at the top of VisualSoar, click on Datamap | Check All Productions Against the Datamap. In the
feedback window at the bottom you will see a list of blue warnings. What you just did was make
VisualSoar check all of your rules to see if they matched the Datamap for this project. Recall that the
Datamap is a representation of the structure of working memory. Since you just added new
augmentations to the state in your rule, but not to the Datamap, warnings are created. To fix this, right-

 Soar Tutorial

25

click in the operator window on “water-jug” and click on Open Datamap so that now you have the
Datamap and initialize-water-jug windows open. You will notice that VisualSoar has already included the
structure for the Initialize-water-jug operator – this is automatically created whenever a new operator is
added to the operator set. The Datamap is a hierarchical structure that looks like folders and files as in
the operator window, but it is really the structure of working memory. The folders are used to represent
working memory elements (such as operator) whose values are identifiers, and thus can have
substructure. The file-like structures are attributes that have constants as values – either sets of symbols
(enumeration), integers, floating point numbers (floats), or strings. You must now add entries into the
Datamap for the water-jug state structure.

What you need to add to the Datamap are the jug structures that are created by initialize-water-jug and
that will be used by the remaining operator. In order to add a new attribute to the Datamap, you start by
right clicking on the “water-jug” folder in the Datamap (not in the operator window). The water-jug folder in
the Datamap represents the top-state structure in Soar. After right-clicking, a menu will appear that let’s
you select the type of value that will be associated with the attribute you are creating. Since the jug
attribute will have an identifier as its value, select “Add Identifier …”

Initialize-water-jug operator –
automatically created

File-like structures for attributes with constant values: integers, floats, strings, enumerations

Folder structures for attributes with identifier
values, which can have substructure

 Soar Tutorial

26

You will then be prompted for the attribute name. Type in “jug”.

This will add the jug structure to the Datamap. You can now right click on the jug structure, and select
“Add Integer …” to add the contents attribute to the jug structure. Type in the name, and then repeat this
for the empty and volume attributes. If the attribute had values that were different possible symbols, you
would use the “Add Enumeration …” selection. Your screen should now look like this:

Now have VisualSoar check all productions against the Datamap (using the command under the
Datamap tab in the toolbar), you should have no errors. Make sure to save and feel free to close the
Datamap and initialize-water-jug windows.

In the above rule, the variable <o> is used to connect the first condition to the second. To simplify the
writing and reading of rules, Soar allows you to combine conditions that are linked by variables. To do
this, you can just string together attributes, replacing the intermediate variables with a period, “.”, to
separate the attributes. In Soar, we call this “dot” or “path” notation. Below is the same rule as before
using dot notation.

sp {water-jug*apply*initialize-water-jug
 (state <s> ^operator.name initialize-water-jug)
 -->
 (<s> ^name water-jug
 ^jug <j1>
 ^jug <j2>)
 (<j1> ^volume 5
 ^contents 0)
 (<j2> ^volume 3
 ^contents 0)}

. replaces <o>

The folder “jug”
has been added to
the Datamap.

 Soar Tutorial

27

4.4 Persistence of Working Memory Elements
When the water-jug*apply*initialize-water-jug rule fires, all of the structures in its action are
added to working memory. At this point, it would be desirable for the initialize-water-jug operator to be
removed from working memory so that other operators can be selected. This is exactly what Soar does
because the conditions of the proposal rule no longer match (the conditions testing for the absence of a
task and the absence of the jug augmentation fail to match because those structures have been added to
working memory). Once that rule retracts, the rule that applied the operator also no longer matches
because the operator is no longer in working memory. However, we do not want the application rule to
remove the structures it created when it no longer matches. If it did, the system would never be able to
make any real progress – it would get in an infinite loop of proposing and applying an operator, retracting
its results, and then proposing and applying the operator again.

In order to support the different needs of different problem solving functions (in this case operator
proposal and operator application), Soar makes a distinction between the persistence of working memory
elements created by operator application rules and the persistence of working memory elements created
by other types of rules. Operator application needs to create persistent results because operators are the
deliberate commitments that the system has made – it has decided to apply the operator and make
potentially non-monotonic changes to the state – to move itself to a new state in the problem space. All
other rules in Soar compute the entailments/elaborations of the current state without actually changing it
and should be retracted when they no longer match the current state. This is a very important feature of
Soar – it makes a distinction between knowledge that modifies the current state (knowledge in operator
applications), and knowledge that just computes the entailments of the current situation (including which
operators should be considered for the current state).

Soar automatically classifies rules as to whether they are part of an operator application or not. A rule is
an operator application rule if it tests the selected operator and modifies the state. The working memory
elements created by such a rule persist and are said to have operator-support, or o-support because they
are created as part of an operator. These working memory elements can be removed by other operator
applications rules (this type of removal has yet to be introduced in the tutorial), or if they become
disconnected from the state (because of the removal of other working memory elements).

For non-operator application rules, including rules that propose an operator, rules that compare
operators, rules that elaborate operators, or rules that elaborate the state, the working memory elements
created by the rules are removed from working memory if the rule no longer matches. These working
memory elements are said to have instantiation-support or i-support – meaning they will persist only as
long as the rule instantiation that created them still matches.

We will examine the persistence of working memory elements in more detail when we create the rules for
the Water Jug, but this is a fundamental and sometimes difficult part of Soar for people to learn. It
differentiates Soar from most other rule-based systems that don’t have rules that automatically retract
their results when they no longer match and it gives Soar its own Truth-Maintenance System (TMS).

 Soar Tutorial

28

4.5 Water Jug State Elaboration
The initialization operator creates jugs that include the volume and content. As mentioned earlier, it will be
useful for each jug to include the amount of additional water that can be added to it before it is full.
Although this could be created by the initialization operator, it would have to be maintained by every
operator application and that would make the operator application rules more complex. An alternative is
to compute the available volume for each jug in the state with a separate rule. This rule will test the state
and create a new structure on the state. This type of rule is called a state elaboration rule. State
elaboration rules are ubiquitous in large Soar systems because they can create useful abstractions of
combinations of other working memory elements and represent them directly on the state as a new
augmentation. These new augmentations can then be tested in other rules in place of complex
combinations of conditions, simplifying rules and making the structures in working memory more
meaningful. A critical aspect of state elaboration rules is that they create i-supported working memory
elements so that when the parts of the state they test change, they recompute their actions automatically.

For the Water Jug problem, the state elaboration will compute the amount of empty space in a jug:

water-jug*elaborate*empty
If the state is named water-jug and a jug can hold volume v and currently has
contents c, then add that it has v – c available (empty) space.

The first condition that it tests is that the state is named water-jug, so that it will only apply for water-jug
problems. This test will be included in all of the water jug rules. It then tests that there is a jug and adds
an appropriate empty attribute. Translating the conditions of this rule to Soar is straightforward. We have
to include conditions for the jug, its volume and its contents.

The action requires adding a new attribute to the jug (thus using the same variable as matched in the
condition, <j>) and then computing the value by doing some math. In Soar, all math is done using prefix
notation where the math operations (+, -, *, /) come before the arguments, with parentheses surrounding
the computation. For example, if the value was going to be the sum of <v> and <c>, you would put (+
<v> <c>) where the value should be (right after the ^empty attribute). You can nest operations using
additional parentheses, such as (+ 2 (* <v> <c>)) to add 2 to the product of <v> and <c>, but for
this case, nesting is not necessary. See if you can write the rule yourself before looking below:

sp {water-jug*elaborate*empty
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^volume <v>
 ^contents <c>)
 -->
 (<j> ^empty (- <v> <c>))}

When the contents of a jug changes through an operator application rule, this rule will retract the old
value of ^empty and fire to compute a new value.

VisualSoar – This rule is an elaboration. VisualSoar has a folder named elaborations in the operator
window to hold files for state elaborations. Right-click on this folder and click “Add a File…”. You will see a
text box pop-up. In the Name category type “empty” and click OK. Expand the elaborations folder and you
should see the file you just created and two default files named “_all” and “top-state.” These files are
provided for all Soar programs and have a few simple rules that are useful for tasks with substates. You
should now open the “empty” file by double clicking on it. You can add the rule from scratch and just type
it in, or you can use a template. To use a template, click on Insert Template in the toolbar and select
elaborate-state. That will give you the basic structure of an elaboration rule. Just as before, check your
file against the Datamap.

The value for this augmentation is the
result of the subtraction.

 Soar Tutorial

29

4.6 Water Jug State Initialization and Elaboration
At this point you should have written your initialization rule and the state elaboration rule into your Soar
editor. Make sure to save this file then start up the Soar Debugger and load these rules in using the
source command.

Now set the watch level to 5 and expand the trace so you can see rules fire and the creation on working
memory elements.

As you step through the execution,

1. The water-jug*propose*initialize-water-jug rule fires to propose the initialization
operator. Expand the plus sign next to 1:O: O1 (initialize-water-jug)

2. The operator and the acceptable preference for it are added to working memory: (s1
^operator o1 +), (o1 ^name initialize-water-jug). The “+” signifies that the
operator is proposed and not selected.

3. The initialization operator is selected by the decision procedure.
A working memory element is added to working memory to indicate that the operator is selected:
(s1 ^operator o1). Note that the operator preference is still in working memory.

4. The application operator fires and creates the jugs on the state and the name.
5. The operator proposal retracts because the condition that tests for the absence of the name fails

and the water-jug*elaborate*empty rule fires twice, once for each jug, and computes the empty
augmentation for each of the jugs.

6. A substate is created (ignore for now) because there are no other rules to fire.
Note that in number 4, water-jug*elaborate*empty fires twice because there are two jugs and this rule
matches successfully with each jug. Each of these matches is called an instantiation. An instantiation
consists of a set of working memory elements that successfully match a rule. In this case, there will be
two sets of three working memory elements that are completely separate. Sometimes a rule will have
multiple instantiations that share some of the same working memory elements, while in other cases such
as this one, they are all different.

Given that there are two instantiations, which one should fire first? There really is no way to say that one
is more important than another, and in Soar, we attempt to avoid decisions when we really don’t have to
make them, so in Soar, all rules that newly match fire at the same time, in parallel. Of course the Soar
program is running on a serial computer (usually), so it isn’t really in parallel, but for all intents and
purposes, the rules fire in parallel. This is very different than most programming languages and can be
confusing (and liberating) because you will find that rules fire as soon as they match.

Below is a more complete look at Soar’s basic cycle. For this problem there is no input and output, so
those boxes are skipped. Starting at the left, rules fire (or retract) that elaborate the state or propose
operators. There might be multiple rules firing (or retracting) in parallel, and the results of one rule firing
(or retraction) might lead to additional rules firing (or retracting), and Soar continues to fire these waves of
rules until there are no new firings (or retractions). Once there are no more rules to fire (or retract),
quiescence is reached and the decision procedure is entered to select the operator. This approach
guarantees that when a decision is made, all of the available knowledge from rules is available.

After the operator is selected, rules that apply the operator can fire. Operator application will usually lead
to firing and retracting of state elaboration and operator proposal rules and that will also happen during
the operator application phase. When that phase reaches quiescence, output and then input are
processed followed by the first phase described above. In tasks where there is an external environment,
many operators require action in the world, and so changes to the state will appear during input. In the
water jug task, all state changes happen in operator application, so that the elaborate state and propose
operator phase do not lead to additional rule firings after the first time through the cycle.

Elaborate State
Propose Operators

Apply Operator

Select
Operator

Output Input

 Soar Tutorial

30

4.7 Water Jug Operator Proposals
In the Water Jug problem, there are three operators: fill, empty, and pour. In this section we will create the
rules that propose these operators. One thing Soar lets us do is separately compute when an operator
can apply (proposal rules that create acceptable preferences for operators) from when it should apply
(search control rules that create other types of preferences).

Listed below with each operator are the conditions under which an operator is legal. These conditions will
be the basis for the operator proposals.
• Fill a jug with water from the well, if that the jug is not full.
• Empty the water from a jug to the well, if there is water in the jug.
• Pour water from one jug to another jug, if there is water in the source jug and the destination jug is

not full.

Although one could attempt to fill a jug that is already full; in Soar, operators must change the state in
some way so that another operator can be selected. Thus, in our formulation, filling a full jug must be
disallowed. Now write English descriptions of the proposals.

water-jug*propose*fill
If the task is water-jug and there is a jug that is not full,
then propose filling that jug.

water-jug*propose*empty
If the task is water-jug and there is a jug that is not empty,
then propose emptying that jug.

water-jug*propose*pour
If the task is water-jug and there is a jug that is not full and the other
jug is not empty,
then propose pouring water from the second jug into the first jug.

Each of these rules can potentially match either one of the jugs.

In translating these rules into Soar, we need to write the tests in the conditions, but we also need to write
actions that will create the operator. The hello-world and initialization operators were just a name;
however, with these new operators, you want to have some parameters that specify which jugs are being
filled, emptied, or poured. If you really wanted to, you could encode everything in the name of the
operators, but then we would need six different operators, such as “fill-jug-three” or “pour-jug-five-into-jug-
three”, and this would require separate rules to apply each of those operators. Instead, by having
parameters with the operators, you can have fewer rules that apply the appropriate changes to the state.
For this task, a set of operator parameters and possible labels are listed below:
• The name of the operator: ^name fill/empty/pour.
• The jug that is being filled by the fill operator: ^fill-jug <j>.
• The jug that is being emptied by the empty operator: ^empty-jug <j>.
• The jug that is being poured out of by pour: ^empty-jug <j1>.
• The jug being poured into by pour: ^fill-jug <j2>.

For example, with this representation, the operator representation for pouring from jug <j1> to <j2> would
be:

(<o> ^name pour
 ^empty-jug <j1>
 ^fill-jug <j2>)

There are lots of other possibilities and it is not necessary to share the name of the parameters between
the pour operators and the others.

 Soar Tutorial

31

Now try to write the first proposal as a Soar rule for proposing fill. The only test besides the name of the
state is that the jug is not full. Using what you know already, one way to write this rule is:

sp {water-jug*propose*fill
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> -^empty 0)
 -->
 (<s> ^operator <o> +)
 (<o> ^name fill
 ^fill-jug <j>)}

This rule tests that jug <j> does not have an empty augmentation of 0. This is a double negative, and
although correct in the context of what has been written, it is difficult to understand. An alternative is to
test that the ^empty augmentation has a value greater than 0. Soar supports simple tests in conditions
including greater than (>), greater than or equal (>=), less than (<), less than or equal (<=), and not equal
(<>). The tests are associated with the value (or variable) that follows them. So an alternative way to write
this rule is:

sp {water-jug*propose*fill
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^empty > 0)
 -->
 (<s> ^operator <o> +)
 (<o> ^name fill
 ^fill-jug <j>)}

Another alternative condition would be to replace the test of empty being greater than zero with a test that
the contents don’t equal the volume: (<j> ^volume <v> ^contents <> <v>).

One alternative that is not possible is to do some simple math in the conditions to test whether the volume
minus the contents equal 0. Soar does not allow any math in conditions – you should use elaborations
instead so that the math is always done in actions.

VisualSoar – If you look in the operator window in VisualSoar, you will not see anything relating to a “fill”
operator . You need to create a new operator file that will hold all of the rules related to fill. To do this,
right-click on “water-jug” in the operator window and click on “Add a Suboperator…”, name it “fill” and click
OK. Open the newly created fill operator and add the rule above (using the propose operator templates).

When finished adding the rule, open the Datamap. You will notice that an operator structure for fill has
automatically been created, but you need to add empty-jug as an attribute. The value for empty-jug is an
identifier, but it is really the same structure as a jug on the state. So instead of creating a new empty-jug
structure from scratch, we want to create a “link” from empty-jug to the state jug structure. Note, we don’t
want a copy of the jug structure, because if the jug substructure changes, we want those changes
reflected in the empty-jug structure. To create the link is the “trickiest” operation in VisualSoar. First, left-
click and hold (don’t let up on the left-mouse button!) on the “jug” structure on the state. Then with drag
that structure onto the fill operator structure in the Datamap. If you let up on the button now, it would
move the jug structure, but we want to create a link. To do that, hold down the “ctrl” and “shift” keys
(usually with your left hand). This should make a new icon appear that has a little arrow (see diagram
below). Then let up on the mouse button (while keeping “ctrl” and “shift” down. This will create an attribute
of the operator with name “jug”. (Note: sometimes the display of the Datamap in VisualSoar is not
correctly updated. You might need to close the Datamap and reopen it for it to refresh correctly).

Numeric comparison in condition:
Tests that value must be greater than zero

Tests that the jug does not have 0
available space – it is not full.

 Soar Tutorial

32

At this point, you should rename the attribute. Do this by right-clicking on the attribute, and then select
“Rename Attribute …” from the menu. Type in “fill-jug” and then click OK.

Holding down ctrl + shift while pressing the
mouse button will change the mouse icon.

Release mouse, then release ctrl + shift
while over top of the operator : [fill] folder.

Click and hold down left mouse button

Drag mouse to the operator : [fill] folder

jug has been linked
to operator : [fill]

 Soar Tutorial

33

Now try to write the proposal for emptying a jug. This requires only minimal changes to the previous rule,
changing the test that a jug is not full to a test that the jug is not empty.

sp {water-jug*propose*empty
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^contents > 0)
 -->
 (<s> ^operator <o> +)
 (<o> ^name empty
 ^empty-jug <j>)}

VisualSoar – This is very similar to before. Add a suboperator (just like “fill”) called “empty” to water-jug,
type in the rule, and create the Datamap entries for it.

Writing the third proposal for pour requires a test that one jug is not empty (so it can have water poured
from it) and the other jug is not full (so water can pour into it). You might think that this is a simple
combination of the tests in the previous two rules so that the rule should be:

 sp {water-jug*propose*pour*wrong
 (state <s> ^name water-jug
 ^jug <i>
 ^jug <j>)
 (<i> ^contents > 0)
 (<j> ^empty > 0)
 -->
 (<s> ^operator <o> +)
 (<o> ^name pour
 ^empty-jug <i>
 ^fill-jug <j>)}

This rule is not correct because the tests for jug <i> and jug <j> can match the same jug. That is because
there is nothing in Soar that prevents different conditions from matching the same working memory
element. For example, if working memory holds (s1 ^jug j1) (j1 ^contents 3 ^empty 2
^volume 5), this rule would create a proposal for a pour operator that would pour from jug j1 to itself
because it would successfully match the conditions for both <j> and <i>. To correct this rule, the
conditions must be modified so the <i> and <j> can not match the same identifier, that is, that <j> is not
equal to <i>. That test in Soar is <> <i>. But where should that test be added in the rule? In Soar, multiple
tests of a value (and multiple tests for an identifier or attribute) can be specified by surrounding all of the
tests with curly brackets: { … }. In this case, we can combine the test for <j> with <> <i> to be {<j> <>
<i>}. This demonstrates both the use of curly brackets and the use of not equals. Note that the test could
also be { <> <i> <j> } and it would mean exactly the same thing – what matches in this position cannot
equal <i> and must equal <j>.

 sp {water-jug*propose*pour
 (state <s> ^name water-jug
 ^jug <i>
 ^jug { <j> <> <i> })
 (<i> ^contents > 0)
 (<j> ^empty > 0)
 -->
 (<s> ^operator <o> +)
 (<o> ^name pour
 ^empty-jug <i>
 ^fill-jug <j>)}

Incorrect: both <j> and <i> could match
same jug.

Correct: match <j> and not equal to <i>.
Must have space before and after <>.

 Soar Tutorial

34

VisualSoar – Once again this is very similar to before. Add a suboperator (just like “fill”) called “pour” to
water-jug, type in the rule, and add the Datamap entries for it.

Now that you have all of the proposals written, you can load them in with your other rules. What happens
when you run them? You will see that only water-jug*propose*fill matches in the initial state. It fires twice
since it matches both jugs, right after ^empty is added to each jug. What happens next? When Soar does
not have enough knowledge to select between the two operators, it has a tie impasse and it automatically
creates a substate where it can do reflective problem solving to decide what to do next. We will cover
substates in a later section. For now, we just want Soar to select randomly between these operators. You
can tell Soar that it doesn’t matter which operator is selected by creating an indifferent preference, using
“=” for the operator. This can be created in the same rule that proposes the operator.

sp {water-jug*propose*fill
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^empty > 0)
 -->
 (<s> ^operator <o> +
 ^operator <o> =)
 (<o> ^name fill
 ^fill-jug <j>)}

The two actions for ^operator can be shortened by using just:

 (<s> ^operator <o> + =)
which means create an acceptable and indifferent preference (you always need the acceptable
preference, even if there are other preferences created). You should modify all of the operator proposals
to include the = preference.

Indifferent preference will lead to a
random selection and avoid an impasse.

 Soar Tutorial

35

4.8 Operator Application
The next step is to write the operator application rules that will fire once an operator is selected. In the
Water Jug problem, your rules apply operators by adding and removing working memory elements to
reflect the pouring of the water.

What keeps the operator application productions from applying over and over again? When the operator
rules apply, they change the part of the state either directly (through rules that change working memory)
or indirectly (by doing some action in the world that changes what the Soar agent perceives – more on
that in later sections). These changes will cause the acceptable preference for the selected operator to
retract because at least one of the working memory elements that matched the proposal rule changed.
The changes to working memory will cause new matches of proposal rules, which will be followed by the
selection of a new operator, its application, and so on.

Given the state representation used in this problem, there are two different ways that the operators can
change the state representation. The most straightforward is to add and delete the ^contents attributes
of the jug objects. However, the operators could also remove a jug and create a completely new jug
object with the correct contents and volume attributes. Although this is less efficient, it has some
advantages for planning and we will return to this approach in Part IV. For now you should write operator
application rules that modify the ^contents attribute of the jug objects (it is not necessary to modify the
^empty attribute because it will be automatically recomputed whenever the ^contents change).

In the Water Jug, there are three separate operators and each one requires its own operator application
rules. We will examine them one at a time. The first is fill. Try to write an English version of its operator
application rule.

water-jug*apply*fill
If the task is water-jug and the fill operator is selected for a given jug,
then set that jug’s contents to be its volume.

This rule requires replacing the current value of the contents with a new value (the volume). To replace a
value in Soar, you must remove the original working memory element and create a new one. There is no
way to just replace the value field in an existing working memory element. This is an important attribute of
Soar – all changes require the addition or deletion of working memory elements. You cannot modify a
working memory element once it is created. You already know how to create a working memory element.
To delete one, you specify the working memory element in the action but with a minus “-“ at the end.

sp {water-jug*apply*fill
 (state <s> ^name water-jug
 ^operator <o>
 ^jug <j>)
 (<o> ^name fill
 ^fill-jug <j>)
 (<j> ^volume <volume>
 ^contents <contents>)
 -->
 (<j> ^contents <volume>)
 (<j> ^contents <contents> -)}

VisualSoar – In VisualSoar, we group all of the rules for an operator in a single file. In this case, you
should reopen the fill operator file, and add this rule (using a template) directly under water-
jug*propose*fill.

The rule to apply the empty operator is essentially the inverse of fill.

To remove a working memory element,
use “-“.

 Soar Tutorial

36

water-jug*apply*empty
If the task is water-jug and the empty operator is selected for a given jug,
then set that jug’s contents to be 0 and its empty to be its volume.

 sp {water-jug*apply*empty
 (state <s> ^name water-jug
 ^operator <o>
 ^jug <j>)
 (<o> ^name empty
 ^empty-jug <j>)
 (<j> ^volume <volume>
 ^contents <contents>)
 -->
 (<j> ^contents 0
 ^contents <contents> -)}

This rule shows a shortcut in that two changes to working memory that involve the same identifier can be
written without repeating the identifier.

VisualSoar – Once again, put the application of empty in the same file that holds the proposal of empty.

The pour operator is more complex because there are two different situations. One situation is where
pouring the water into the jug being filled can hold all of the water being poured in, such as pouring from
the three gallon jug into an empty five gallon jug. The other situation is where the jug being filled cannot
hold all of the water, so that some water is left in the source jug, such as when pouring from the full five
gallon jug into an empty three gallon jug. As a result, we have to write two rules that cover these two
situations.

water-jug*apply*pour*will-empty-empty-jug
If the task is water-jug and the pour operator is selected,
 and the contents of the jug being emptied are less than or equal to
 the empty amount of the jug being filled,
then set the contents of the jug being emptied to 0;
 set the contents of the jug being filled to the sum of the two jugs.

 sp {water-jug*apply*pour*will-empty-empty-jug
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name pour
 ^empty-jug <i>
 ^fill-jug <j>)
 (<j> ^volume <jvol>
 ^contents <jcon>
 ^empty <jempty>)
 (<i> ^volume <ivol>
 ^contents { <icon> <= <jempty> })
 -->
 (<i> ^contents 0
 ^contents <icon> -)
 (<j> ^contents (+ <jcon> <icon>)
 ^contents <jcon> -)}

VisualSoar – Put this rule, along with the next one, into the file containing the proposal for pour.

To remove a working memory element,
use “-“.

 Soar Tutorial

37

This rule shows why it is useful to have the ^empty augmentation on the jugs. Without it, it would be very
difficult to have the test that the jug being filled could hold the water from the jug being poured from.

water-jug*apply*pour*will-not-empty-empty-jug
If the task is water-jug and the pour operator is selected, and
 the contents of the jug being emptied are greater than the empty amount
 of the jug being filled,
then set the contents of the jug being emptied to its contents minus the
 empty of the jug being filled;
 set the contents of the jug filled to its volume.

 sp {water-jug*apply*pour*will-not-empty-empty-jug
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name pour
 ^empty-jug <i>
 ^fill-jug <j>)
 (<i> ^volume <ivol>
 ^contents { <icon> > <jempty> })
 (<j> ^volume <jvol>
 ^contents <jcon>
 ^empty <jempty>)
 -->
 (<i> ^contents (- <icon> <jempty>)
 ^contents <icon> -)
 (<j> ^contents <jvol>
 ^contents <jcon> -)}

Now that you have written both operator proposals and application rules, you can load them into Soar and
try them out. It may be difficult to follow the problem solving, so before running your program you should
probably add the monitoring rules described in the next section.

 Soar Tutorial

38

4.9 State and Operator Monitoring
Monitoring rules are useful for printing out the details of the operator being applied and the contents of
each state. Below are four rules that monitor the selected operator and the state (one rule for each
operator and one for the state). One of the nice things about Soar is that all of the monitoring rules fire in
parallel with the other rules and don’t interfere with the problem solving at all.

The write command concatenates all of its arguments, which can include constants and variables. To
make the output readable, you want to have a linefeed before writing out any text, using the (crlf)
command, which stands for carriage-return and linefeed.

 sp {water-jug*monitor*state
 (state <s> ^name water-jug
 ^jug <i> <j>)
 (<i> ^volume 3 ^contents <icon>)
 (<j> ^volume 5 ^contents <jcon>)
 -->
 (write (crlf) | 3:| <icon> | 5:| <jcon>)}

 sp {water-jug*monitor*operator-application*empty
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name empty
 ^empty-jug.volume <volume>)
 -->
 (write | EMPTY(| <volume> |)|)}

 sp {water-jug*monitor*operator-application*fill
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name fill
 ^fill-jug.volume <volume>)
 -->
 (write | FILL(| <volume> |)|)}

 sp {water-jug*monitor*operator-application*pour
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name pour
 ^empty-jug <i>
 ^fill-jug <j>)
 (<i> ^volume <ivol> ^contents <icon>)
 (<j> ^volume <jvol> ^contents <jcon>)
 -->
 (write | POUR(| <ivol> |:| <icon> |,| <jvol> |:| <jcon> |)|)}

With these rules, your program will apply operators and pour water. At some point it might even reach the
desired state; however, it will not recognize that state and it will just keep going.

VisualSoar – The logical place to add these rules is in a new file called “monitor” in the elaborations
folder.

 Soar Tutorial

39

4.10 Desired State Recognition
The final step in creating a program that not only solves Water Jug, but knows that it solved it is
generating a rule that recognizes when a desired state has been achieved. You need to write a rule that
recognizes when the three-gallon jug has one gallon in it. The action of the rule should be to print out a
message that the problem has been solved and halt. Write an English version of this rule.

water-jug*detect*goal*achieved
If the task is water-jug and there is a jug with volume three and contents
one, write that the problem has been solved and halt.

Translating this into Soar is relatively straightforward.

sp {water-jug*detect*goal*achieved
 (state <s> ^name water-jug
 ^jug <j>)
 (<j> ^volume 3
 ^contents 1)
-->
 (write (crlf) |The problem has been solved.|)
 (halt)}

Another approach that is often used is to create a representation of the desired state in working memory
and write a rule that compares that desired state to the current state. There are two advantages to this
approach. First, if you want to try to solve many different Water Jug problems, a new desired state can be
attempted by modifying working memory (possibly by getting input from a sensor) instead of changing a
rule. Second, in many problems, the description of the desired state can be used to guide the search
using a technique called means-ends analysis. Using means-ends analysis in Soar will be included in a
future tutorial.

Below is an example rule that creates the desired state, which in this case is the three-gallon jug
containing 1 gallon. This rule will fire when the initialization operator is selected, in parallel with the other
initialization rule.

 sp {water-jug*apply*initialize*create*desired-state
 (state <s> ^operator.name initialize-water-jug)
 -->
 (<s> ^desired.jug <k>)
 (<k> ^volume 3
 ^contents 1)}

Below is the modified goal recognition rule. It compares the contents and volume of the desired jug to one
in the current state. This rule is correct only for desired states that describe a single jug. If the desired
state required specific amounts in each of the two jugs, a more elaborate rule would be required.

 sp {water-jug*detect*goal*achieved
 (state <s> ^name water-jug
 ^desired.jug <dj>
 ^jug <j>)
 (<dj> ^volume <v> ^contents <c>)
 (<j> ^volume <v> ^contents <c>)
 -->
 (write (crlf) |The problem has been solved.|)
 (halt)}

If you add these to the earlier rules, the program will halt; however, it can take a long time. When I ran it
ten times, it took an average of 168 decisions to solve the problem, with a range of 4 (the optimal) to 428.

 Soar Tutorial

40

VisualSoar – There were two different ways of writing the rule(s) that detects the desired-state. In each
case, the purpose of the rule named water-jug*detect*goal*achieved is to continually monitor the state to
see if the goal has been reached. Because the purpose of this rule is to monitor, it makes sense to create
a new file (possibly named “goal-test”) in the elaborations folder and enter it there. If you chose to go with
the second way of writing the goal detection, then where should water-jug*apply*initialize*create*desired-
state be placed? Since it tests the initialize-water-jug operator, it naturally should be added to the folder
that holds that operator. Remember, how you group your rules is completely up to you. It makes sense to
think of grouping in VisualSoar as an advanced way to comment code: it doesn’t affect the way the code
is interpreted by the computer, but if you or anyone else ever has to alter the code, it will make it much
easier to understand. From here on out, it is up to you to choose how you want to group your code.

 Soar Tutorial

41

4.11 Search Control
In order to make the search more efficient; you need to add rules that prefer operators that have the best
chance of leading to one of the desired states. There are few general heuristics that you can use in the
water jug. The total number of possible states is only 16; however, they are highly connected, and it is
difficult to avoid revisiting the same state over and over again unless a list of visited states is maintained.
Maintaining such a list is possible in Soar, but it is not easy – it would require creating a copy of every
state after an operator has applied and then comparing a new state to the states in the list. In the section
on planning you will learn about an alternative approach that is a more natural way for Soar programs to
avoid repeated visits to the same state. For now, we will concentrate on avoiding undoing the last
operator that was applied, such as emptying a jug right after it has been filled, filling a jug after it has been
emptied, or pouring water from one jug into the other right after the opposite pouring has been done.
These heuristics will be even more effective when for the Missionaries and Cannibals problem and
planning, but for now they allow us to look at how to maintain a history of the last operator application.

In order to avoid undoing the last operator, the program must remember the operator in the state after it
applies. In Soar, this memory is not automatic. The selected operator is retracted as soon as it applies. In
order to have a record of the previous operator; you must add some rules that deliberately record the
operator each time one is applied. The rules will be part of the operator application because they will test
the operator in order to record it, which in turn will make the record persistent (which is what you want).

Recording an operator has two parts. The first is creating a structure on the state that is the memory of
the most recent operator. The second is removing any record of an older operator. Given the
representation of the water jug operators in working memory, you will have to write three rules to record
the last operator – one for each operator. If all of the operators had exactly the same augmentations, then
it would be possible to do this with one rule, and we could change the operator representations to make
this easy, but for now, we will go with the existing operator representations. The action of these rules
should be to create an augmentation of the state that includes the augmentation of the selected operator
(name, fill-jug, empty-jug as appropriate). It should not create a link to the original operator because all of
the substructure of that operator will be removed as soon as the rule that created operator retracts. Try to
write English versions of these rules. We will show only rules for the pour operator.

water-jug*apply*operator*record*last-operator*pour
If the task is water-jug and the pour operator is selected, then create an
augmentation of the state (last-operator) with the name of the operator and a
copy of the augmentations augmentation.

This can then be converted into a Soar rule:

 sp {water-jug*apply*operator*record*last-operator*pour
 (state <s> ^name water-jug
 ^operator <o>)
 (<o> ^name pour
 ^fill-jug <fj>
 ^empty-jug <ej>)
 -->
 (<s> ^last-operator <last-op>)
 (<last-op> ^name pour
 ^fill-jug <fj>
 ^empty-jug <ej>)}

The rule to remove old records has to test only if the name of the current operator and the jug
augmentation are different because it is not possible to apply an operator twice in a row.

 Soar Tutorial

42

water-jug*apply*operator*remove*old*last-operator*pour
If the task is water-jug and a pour operator is selected and last-operator
does not have the same name and fill-jug, then remove the last-operator.

 sp {water-jug*apply*operator*remove*last-operator*pour
 (state <s> ^name water-jug
 ^operator <o>
 ^last-operator <last-op>)
 (<o> ^name pour
 ^fill-jug <fj>
 ^empty-jug <ej>)
 -(<last-op> ^name pour
 ^fill-jug <fj>
 ^empty-jug <ej>)
 -->
 (<s> ^last-operator <last-op> -)}

Once you add these rules, add rules that avoid applying an operator that undoes the previous operator
(you should write these yourself).
water-jug*select*operator*avoid*inverse*fill
If the task is water-jug and the last operator is empty then avoid a fill.

water-jug*select*operator*avoid*inverse*empty
If the task is water-jug and the last operator is fill then avoid an empty.

water-jug*select*operator*avoid*inverse*pour
If the task is water-jug and the last operator is pour from one jug then
avoid a pour the opposite way.

 sp {water-jug*select*operator*avoid*inverse*fill
 (state <s> ^name water-jug
 ^operator <o> +
 ^last-operator <lo>)
 (<o> ^name fill ^fill-jug <i>)
 (<lo> ^name empty ^empty-jug <i>)
 -->
 (<s> ^operator <o> <)}

 sp {water-jug*select*operator*avoid*inverse*empty
 (state <s> ^name water-jug
 ^operator <o> +
 ^last-operator <lo>)
 (<o> ^name empty ^empty-jug <i>)
 (<lo> ^name fill ^fill-jug <i>)
 -->
 (<s> ^operator <o> <)}

 sp {water-jug*select*avoid*inverse*pour
 (state <s> ^name water-jug
 ^operator <o> +
 ^last-operator <lo>)
 (<o> ^name pour ^fill-jug <j>)
 (<lo> ^name pour ^empty-jug <j>)
 -->
 (<s> ^operator <o> <)}

Adding these rules, should shorten your search on average. My ten-run average went from 168 to 108.

 Soar Tutorial

43

4.12 Water Jug Problem Space
Given a specific problem space, many different problems can be defined by selecting different initial and
desired states. For example, you could define the problem of starting with both jugs full and getting four
gallons of water into the five-gallon jug. Should that problem be easier or harder than the original
problem? The difficulty can also vary with the definition of the problem space. The original problem
becomes easy if we expand the problem space to include a jug that holds four gallons of water (changing
the objects in the space), and it becomes impossible if there is no pour operator.

One way to understand the Water Jug problems better is to visualize the complete problem space. The
diagram below shows all the states and operator transitions in the Water Jug problem space. Each state
contains the contents of the five-gallon and three-gallon jugs in order. The operator transitions are color
coded. The goal states are shared in light green. In this problem, there are two distinct paths to the
solution, one path much shorter (4 steps) than the other path (10 steps). The difficulty of the problem
stems from the fact that there are usually four operators that can apply to each state but only one leads
toward the solution. The remaining operators lead back toward one of four states, all of which are at least
three steps from the solution. Therefore it is unlikely that this problem will be solved quickly via a random
search.

Although we can layout the complete problem space and the connections between states, the problem
solver usually doesn’t have that information available for examination – it only has the information
available in a single state. For the purposes of this tutorial, we assumed that the agent starts with only an
internal description of the initial state, the set of legal operators, and the desired state so that the problem

0,0

5,0 0,3

5,3 2,3

Fill
Empty
5 to 3
3 to 5

3,0

2,0 3,3

5,1 0,2

0,1

1,0

5,2

4,3

4,0 1,3

 Soar Tutorial

44

will be solved by starting from the initial state and then searching for a desired state by selecting and
applying operators. At any time the agent is at only one state and is faced with selecting an operator to
apply to the state to move to a new state. Often AI planners reformulate problems so that they are
searching through a space of plans (and not states of the problem). In those cases, the states are partial
plans and the operators modify the plan by adding, removing, or reordering plan steps. For the problems
we consider in this tutorial, the problem solver will always be in the space of states of the problem (task
states) and not in a planning space (although you could use Soar to work in the planning space, but it
would complicate the description of Soar).

 Soar Tutorial

45

4.13 Summary of Problem Formulation in Soar
Below is a summary of the main steps in formulating and representing a problem in Soar.
1. The state representation. These are the attributes and values that are used to describe the different

states of the problem. For this problem the state must represent how much water is in each jug.
2. The initial state creation. An operator will generate the state where the problem solving starts. In this

problem, the initial state has both jugs empty.
3. State elaboration rules. These rules elaborate the state with additional structures that aren’t

fundamental to the state (they aren’t created and deleted by operator application rules), but are
derived from the core aspect of the state. Thus, they are entailments that are useful abstractions,
often making it possible to create simpler rules for proposing and comparing operators.

4. The operator proposal rules. These are the rules that propose the legal state transformations that can
be made toward solving the problem. For this problem there are three classes of operators:
a) Pour water from the well into a jug.
b) Pour water from a jug to a jug.
c) Pour water from a jug to the well.

5. The operator application rules. These are the rules that transform the state when an operator is
selected.

6. The operator and state monitoring rules. These are optional rules that print out the operator as it
applies and prints out the current state.

7. The desired state recognition rule. This is a rule that notices when one of the desired states is
achieved. In this problem, the desired states have one gallon of water in the three-gallon jug.

8. The search control rules. These are optional rules that prefer the selection of one operator over
another. Their purpose is to avoid useless operators and/or direct the search toward the desired
state. Theoretically you could encode enough rules so that the correct operator is always selected for
each state. However, you would have had to already solved the problem yourself to figure out those
rules. Our goal is to have the program solve the problem, using only knowledge available from the
problem statement and possibly some general knowledge about problem solving. Therefore, search
control will be restricted to general problem solving heuristics.

