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Introduction 
 
This is a guide for learning to create software agents in Soar, version 9. It assumes no prior knowledge of 
Soar or computer programming. 
 
The goals of this document are: 
• Introduce you to the basic operating principles of Soar.  
• Teach you how to run Soar programs and understand what they do.  
• Teach you how to write your own Soar programs.  
 
This is about the nuts and bolts of writing Soar programs, but not about the theory behind Soar. For that, 
you should read Chapter 3 of the Soar Manual or the Gentle Introduction to Soar:  2006 Update, 
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf.  
 
This tutorial takes the form of a sequence of lessons. Each lesson introduces concepts one by one and 
gives you a chance to use them by creating Soar agents. Each lesson builds on the previous ones, so it is 
important to go through them in order. To make the best use of this tutorial, we recommend that you read 
the tutorial, do the exercises, run the programs, and write your own Soar agents. The programs are 
available as part of the standard Soar installation. Please use the most recent version. Although the 
tutorial is long, you should be able to work through it quickly. 
 
What is Soar? We call Soar a unified architecture for developing intelligent systems. That is, Soar 
provides the fixed computational structures in which knowledge can be encoded and used to produce 
action in pursuit of goals. In many ways, it is like a programming language, albeit a specialized one. It 
differs from other programming languages in that it has embedded in it a specific theory of the appropriate 
primitives underlying reasoning, learning, planning, and other capabilities that we hypothesize are 
necessary for intelligent behavior. Soar is not an attempt to create a general purpose programming 
language. You will undoubtedly discover that some computations are difficult or awkward to do in Soar 
(such as complex math) and they are more appropriately encoded in a programming language such as C, 
C++, or Java. Our hypothesis is that Soar is appropriate for building autonomous agents that use large 
bodies of knowledge to generate action in pursuit of goals.  
 
The tutorial comes in six parts. Part I introduces Soar using a simple puzzle task called the Water Jug to 
introduce the basic concepts of Soar. This is the classic type of toy problem that people in AI now rail 
against as being completely unrepresentative of real world problems. Maybe true, but it is simple and 
easy to understand. After working through Part I, you should be able to write simple Soar programs. Part 
II uses a Pacman like game called Eaters to introduce interaction with external environments. Part III 
uses a grid-based tank game called Tank-Soar and introduces Soar’s subgoaling mechanism as it is used 
for task decomposition. Part IV uses Missionaries and Cannibals problems to further explore internal 
problem solving and search. Part V uses Missionaries and Cannibals along with the Water Jug to 
introduce look-ahead planning and learning. Finally, Part VI gives an overview of creating a more 
complex Soar system for playing Quake.  
 
Soar has its own editor, called VisualSoar, which we highly recommended for use in developing Soar 
programs. VisualSoar is part of the standard installation and is also available from the Soar homepage. 
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Part I: Simple Soar Programs 
Throughout this tutorial, you will be writing and running Soar programs for simple tasks. In this part, you 
will be writing simple programs that do not use Soar subgoaling or chunking mechanisms. 

1. Installing Soar 
 
Before reading further in the tutorial, you should install Soar and its associated software on your computer 
so that you can run the examples and exercises. Using your favorite browser, visit the Soar Getting 
Started page: http://sitemaker.umich.edu/soar/getting_started. Follow the directions on that page for 
installation. This will allow you to install three downloads that include with the most recent release of 
Soar, the Soar Debugger, the Eaters game, the TankSoar game, and VisualSoar.  

2. Building a Simple Soar Agent Using Rules 
 
All of the knowledge in a Soar agent is represented as if-then rules. In Soar, rules are called productions, 
and we will use the terms interchangeably. Rules are used to select and apply things called operators, 
and much of this tutorial will be describing how rules and operators fit together. But before we get to 
operators, we are going to learn about writing rules for a very simple agent – one that just prints “Hello 
World.” Before we dive into rules, you will need to start up Soar so that we can run the programs you 
write. 

2.1 Creating a Soar Agent and Using the Soar Debugger 
To start Soar, double click (or whatever is appropriate on your platform) on the Start Soar Debugger 
(Java) file in the folder where you installed Soar, or in Windows, click the Start button, select Programs, 
find Soar 8.6.2 and click Start Soar Debugger. After Soar has started, you will have a new window on 
your screen. This window is the Soar Debugger, which is shown below. This program will be used to run 
all of your Soar programs.  Your version may look somewhat different, depending on the features added 
since this document was written. 
 

   
 
The large window to the left is called the Interaction window (above). During Soar execution, all 
debugging information and print statements will be displayed in the Interaction window.  Just below the 
interaction window is the Command Box for typing in user commands.  The windows on the right display 
information that you will find useful later. 

Interaction window 

Command Box 
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When the Soar Debugger starts, a default agent entitled ‘soar1’ is created. The name of the agent can be 
seen on the title bar. The bottom of the window contains buttons for single stepping, running, or stopping 
an agent. When it is time to run your Soar programs, commands can either be entered by typing them 
into the command box, or by clicking the buttons 
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2.2 Hello-World Rule: English 
The first Soar agent we will examine prints “Hello World”. In general, an operator should perform this type 
of activity, but in order to ease you slowly into Soar, we start with a single rule. Below is a simple rule 
written in English. 

hello-world: 
If I exist, then write “Hello World” and halt. 

Soar cannot directly interpret English, so you must write rules in Soar’s very stylized and precise 
language. A major component of the rest of this tutorial is teaching you that language. 
 
Soar works by testing the ”if” parts of rules (“If I exist”). These ”if” parts are called conditions. If all of the 
conditions of a rule are true in the current situation, the ”then” parts, or actions, of the rule (“write ‘Hello 
World’ and halt”) are executed, which usually involves making changes to working memory, which holds 
all of the dynamic data structures in a Soar program. Executing the actions of a rule is called firing the 
rule. To determine if the conditions are true, Soar compares them to data structures in working memory. 
Working memory defines the current situation, which for an agent consists of its perception of its world, 
results of intermediate calculations, active goals, and operators.  
 
The figure below shows a high level view of Soar. On the right are all of the underlying architectural 
processes that select operators, create states, learn new rules, etc. These are all written in C and you will 
not be changing them at all (so don’t worry if you don’t know C). In the upper center is the rule memory, 
which contains all of the rules. Rules encode the long-term knowledge in Soar and adding them is the 
way Soar is programmed – you do not change the way Soar creates states or learns, but you create 
rules. Working memory is where short-term information is stored and your rules will create and test 
structures in working memory. In contrast to C or Java, which have programs that are executed 
sequentially, Soar has rules that are matched and executed in parallel. C and Java have data structures, 
variables, etc. while Soar has working memory. While these other languages have a combination of local 
and global data, Soar has no local data – everything in working memory is global. Working memory 
consists of a graph structure of individual elements. The elements are created by rules as well as from 
sensors (not shown in the diagram), and the Soar architecture creates a limited set of working memory 
elements (the core part of states) automatically. Working memory is matched against rule memory to 
determine which rules will fire. When rules fire, they can make changes to working memory, as well as 
performing simple actions such as printing messages in the interaction window. 
 

 

Working Memory 

 
Rule Memory 

Decision 
Making 
 
State 
Creation 
 
Learning 
 
… 
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2.3 Loading and Running Hello-World 
Before going through the nitty-gritty of Soar syntax, let’s see an example of Soar executing the hello-
world rule. In order to execute the hello-world rule, it must be loaded from a file into Soar’s rule memory. 
You can load in the rules from a file via the Interaction window by either clicking the “source” button or by 
using the File menu at the top left (you can also type the source command directly into the interaction 
window, but for that you need to know the path to the file).  
 

To use the File menu, click on the toolbar as shown in the figure below. 
 

 
 
The following menu will pop up; select Load source file… 
 

 
 
Alternatively, click on the “source” button at the bottom of the interaction window. In both cases, a menu 
to select the file will pop up, such as below (your menu might have a different set of files available). You 
can navigate in this menu to get to the correct directory (<soardir>/Agents/) and then select the file you 
want to load (hello-world-rule.soar). 
 

 
When rules are loaded into Soar, an “*” is printed for each rule. When the file has loaded, you will see the 
word “source” followed by the location of the file in the interaction window, 
 

Click on this menu 
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At this point you can type run, or click on the run button in the bottom left of the interaction window. The 
first thing that happens is that Soar automatically creates the initial state, S1 (but this is not shown in the 
interaction window, but is shown in the window on the right where the state S1 is printed). All of working 
memory is organized as states, so even before any rules fire, a state is created. After the state is created 
the rule matches (details explained later) and it fires, performing its actions, printing “Hello World” and 
then halting. 
 

Soar always automatically creates a state (S1) for all data. 

“Hello World” printed out by rule followed by halt. 

Start executing Soar by typing run in the 
command window or clicking on the run button. 

Trace of run command being executed. 
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2.4 Hello-World Rule: Soar  
As stated earlier, Soar has a stylized and precise language for writing rules. Here is the Soar rule for 
hello-world.  
 
 

 
 

sp {hello-world 
   (state <s> ^type state) 
--> 
   (write |Hello World|) 
   (halt)}  

 
 
 
Every rule starts with the symbol “sp”, which stands for “Soar production.” The remainder of the rule body 
is enclosed in curly braces: “{“ and “}”. The body consists of the rule name, followed by one or more 
conditions (the “if” part), then the symbol “-->“, and then one or more actions (the “then” part). Below is a 
template for rules: 

sp {rule*name 
   (condition) 
   (condition) 
   … 
   --> 
   (action) 
   (action) 
   …} 

The name of the rule can be any arbitrary combination of letters, numbers, dashes (“-“), and asterisks 
(“*”). The one exception is that a name cannot be a single letter followed by a number such as S1 or O45. 
Soar reserves those names for its own purposes. The specific name is irrelevant to the operation of the 
rule, but you should always pick a name that is meaningful. Following the name, there must be at least 
one condition. A condition tests for the existence (or absence) of data in working memory. If all of the 
conditions match, then the rule will fire and all of the actions are performed. Most actions create new 
working memory elements or remove existing working memory elements. Some actions create 
preferences for selecting operators (more on that later), while others perform functions such as writing 
text to the screen or halting as in hello-world. 
 
In the next several sections we will explore the structure of conditions and actions and explain what all of 
the special symbols, such as <s> and ^type, mean. Before doing that, we need to first look at the 
structure of working memory in more detail. 

sp stands for “Soar 
production” and 
starts every rule. 

The “{“ starts body of a rule. The name of the rule immediately follows the “{“. 
The name can include letters, numbers, “-“, and “*”.  

This is the if part of 
the rule (condition). 

The --> separates 
the if and then parts 
of the rule. 

These are the then parts of the rule (actions). 

The “}” ends the rule. 

… means additional conditions can follow. 

… means additional actions can follow. 
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2.5 Working Memory 
Working memory contains all of a Soar agent’s dynamic information about its world and its internal 
reasoning. It contains sensor data, intermediate calculations, current operators and goals. In Soar, all of 
working memory is organized as graph structures in states. Thus, every working memory element is 
connected directly or indirectly to a state symbol. For the first agents you will build, there will be a single 
state. Below is a simple example of what the structure of working memory might be like if the agent were 
representing that there were two blocks, one on top of the other, which is then on a table as shown in the 
figure below. 

Below is a graphic picture of the working memory structures that Soar creates automatically for every 
agent – so although not shown in the above figure, S1 would have these additional structures. 

 
As a graph, there are nodes (or vertices) and links (or edges). The nodes, such as S1, B1, B2, A, and 
blue, are connected by links, such as block, table, name, color, and superstate. Soar has 
two kinds of nodes: identifiers and constants. The nodes that can have links emanating from them (they 
are non-terminal nodes), such as S1 and B1, are called identifiers, while the others (they are terminal 
nodes), such as state, blue, block, and nil, are called constants.  
 
In the example above, S1 is the identifier for the state. All of the identifiers symbols are created 
automatically by Soar and consist of a single letter followed by a number. Although I2 and I3 in the 
lower figure do not have any links emanating from them, they are identifiers and can have additional 
substructures added later. In contrast, the symbol state is not an identifier and cannot have links 
emanating from it. The links are called attributes in Soar and are prefaced by a “^”. Only identifiers have 
attributes. In the bottom figure, S1 has three attributes: superstate, io, and type. I1 has two: 
output-link and input-link. 
 

B 
A 

^table 

^block 

^block 
 

S1 State identifier 

Attribute 

Value 

^ontop 

^ontop 

^name A 

blue 

block 

B 

yellow 

block 

Table 

gray 

table 

^name 

^name 

^color 

^color 

^color 

^type 

^type 

^type 

B1 

B2 

T1 

^type 

^io 

^superstate 

state 

nil 

^input-link 

^output-link 

 

S1 I1 

I2 

I3 

State identifier 

Attributes 

Value 
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Working memory is actually built of individual elements which are triples of an identifier, an attribute, and 
value, and where the value is that node pointed to by the attribute. The value can be either a constant or 
an identifier. In the example above, the symbols nil, I1, state, I2, and I3 are all values. It is these 
triples that you add and delete when writing Soar programs.  
 
There are five working memory elements in the figure above: 

S1 ^superstate nil  
S1 ^io I1  
S1 ^type state 
I1 ^output-link I2  
I1 ^input-link I3 

This is the minimal contents of working memory, and as your programs get larger and more complex, 
they will manipulate many more working memory elements. 
 
A collection of working memory elements that share the same first identifier is called an object. For 
example, the three working memory elements that have S1 as their identifier are all part of the state 
object. The working memory elements that make up an object are called augmentations. Although we call 
them objects, they consist of the individual working memory elements that share the same identifier. 
Objects are usually written as a list of the augmentations surrounded by parentheses. The first item in the 
list is the identifier that is shared by all of the augmentations, followed by the pairs of attributes and values 
for each augmentation. The objects for the above working memory elements are: 

(S1 ^io I1 ^superstate nil ^type state) 
(I1 ^input-link I3 ^output-link I2) 
 

An individual augmentation can also be written in this form:  
(S1 ^type state) 

 
A working memory object usually represents something about the world, such as a block, a wall, a piece 
of food, or a cell on the board. The individual augmentations represent properties (such as color, size, or 
weight), or relations with other objects (such as on top of, behind, or inside).  
 
Soar can be used for many different tasks, and for each different task, working memory will contain 
descriptions of the task objects. The working memory elements for the blocks would be as follows: 
 
 
 
 
 
 
 
 
 
 
 
Working memory usually also contains objects that are only conceptual things and do not have an 
identifiable physical existence, such as state s1, which organizes other objects, relations, and properties. 
The exact representation of objects is up to you, the designer of a Soar program. 
 
Soar does not require any declarations of the possible attributes and constants. In fact, some Soar 
programs generate new attributes and constant values as they execute. The Soar editing and 
development tool, VisualSoar, does require declarations for the structure of working memory elements, 
and those declarations are used to check for errors in your rules but they are not used by Soar when it is 
executing a program. 
 

B 
A 

(s1 ^block b1 ^block b2 ^table t1) 
(b1 ^color blue ^name A ^ontop b2 ^type block) 
(b2 ^color yellow ^name B ^ontop t1 ^type block) 
(t1 ^color gray ^name Table ^type table) 
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2.6 Hello-World Rule: Soar Details 
You now know enough to return to the first example rule. The original English version included the test  
“If I exist” 
Remember that when every Soar agent is created, it has (s1 ^type state) in working memory, which 
signifies in someway that the agent does exist. Thus, you can test for the presence of that structure in 
working memory to determine if the agent exists. The obvious condition to write would be (s1 ^type 
state). However, s1 is just an arbitrary symbol and might not be the identifier of that state every time 
the agent is run.1 Thus, we need a test that there is an identifier, but without testing a specific value. That 
is exactly what a variable does – it matches any symbol in working memory with the only constraint being 
that all occurrences of the same variable in a rule match the same symbol. A variable can match an 
identifier, an attribute, or a value, depending on its position in a condition – if it is first in a condition it will 
match the identifier, second the attribute, and third the value. A variable is a symbol surrounded by “<” 
and “>”, such as <s>. The exact symbol used in the variable (such as “s”) is irrelevant but should be 
picked to be meaningful to you.  
 
Putting these pieces together gives: (<s> ^type state). That is almost correct, but in Soar, every rule 
must start by matching a structure in a state, and to remind you of this, the first condition of every rule 
must start with the word “state”.  
 

sp {hello-world 
   (state <s> ^type state) 
--> 
   (write |Hello World|) 
   (halt)} 
 

The original text for the rule’s actions was: then write “Hello World” and halt. 
The rule’s first action prints “Hello World” in the Interaction window. Vertical bars, “|”, mark constants with 
special characters. These constants can contain any characters, which allows you to print spaces, upper 
and lower-case letters. The second action is a special command in Soar that halts the agent. From this 
simple example, you should be able to write your own rules that print out different messages for Soar.  
 
If you wish to try this out yourself, you have two choices. The first is to use VisualSoar. VisualSoar is the 
Soar development environment and it lets you develop and manage Soar programs. It has its own 
documentation and tutorial and can be found at the Soar web pages. Also, the Water-Jug problem that is 
presented later in this tutorial contains an explanation of how to use VisualSoar. Although it will initially 
slow you down to learn VisualSoar, it will be worth it in the long run.  
 
If you want to use a text editor, almost any will do, such as Word, WordPerfect, Wordpad, Notepad, or 
Emacs. In this editor, create a new file hello-world.soar in your new folder/directory. Make sure the file 
ends in “.soar”. This may be difficult to do in Wordpad or Notepad, which automatically add “.txt” to the 
end of a file, but this will be important for the Eaters and Tanksoar tasks. If you are having trouble with 
this in Windows, go to the Settings item off the Start menu. Select Folder Options and the pick the File 
Type tab. Select "New Type…" and in the pop-up window define the soar type. You need to fill in "soar" 
(without quotes) under the "Associated extension" and select "text/plain" under "Content Type." 
Whenever you save the file, make sure you save it as a text file with linefeeds. Soar cannot handle 
formatted text and text without linefeeds. 
 

                                                        
1 S1 will always be the identifier of the first state, but that is an artifact of the way Soar is implemented. 

This condition tests that there is a state The first condition always 
starts with “state” 

A variable that matches any identifier in this position 

Prints the following items 
to the Interaction Window Halts the agent 

Vertical bars surround text 
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3. Building Simple Agents Using Operators 
In this section, you will learn how to use rules to select and apply operators. Operators perform actions, 
either in the world or internally in the “mind” of an agent. In the Water Jug problem, they “pour” water 
between jugs in the mind of the agent. In Eaters, the operators will create commands to move the eater 
around the board. There could also be operators to remember uneaten food, count food, or remember 
where walls are that only make changes to the working memory of the Eater. Operators in a Tic Tac Toe 
program would mark X’s or O’s on the board. Operators for a soccer program would probably include 
move, turn, kick the ball, send messages to teammates, interpret messages from teammates, choose a 
tactic or strategy, and so on.  
 
Because operators perform actions, they are the locus of decision making. They are where knowledge is 
used to decide what to do (or not to do). Thus, Soar’s basic operation is a cycle in which operators are 
continually proposed, selected, and applied. Rules fire to propose and apply operators, while the decision 
procedure selects the current operator. This may seem restrictive; however, it forces you to separate out 
where decisions are being made (proposal and selection) and where actions are being performed 
(application).  
 
 
 
 
 
 
 
For Soar to use operators, they must first be created in working memory by proposal rules. Proposal rules 
test features of the state to ensure that the operator is appropriate and then they create a representation 
of the operator in working memory along with an acceptable preference for that operator. The preference 
is a way of telling the architecture that this operator is a candidate for selection. For simple operators, the 
representation in working memory is often just a name of the operator. For example, in section 3.1 we will 
create an operator to print “Hello World” and that operator will just have the name hello-world in working 
memory. More complex operators can also contain representations of parameters. For example, when we 
encode the water jug problem in Soar, one operator will fill a jug with water and it will have a parameter 
as to which jug should be filled. At an extreme, the representation of an operator can specify exactly 
which changes should be made to working memory when it is applied.  
 
Once the operator is selected, rules that apply the operator will match and perform whatever actions are 
appropriate by creating or removing working memory elements. If the chosen operator is represented in 
working memory as just a name, rules that explicitly test that name will be required to apply that operator. 
If the operator already includes a representation of what changes need to be made, then very general 
rules can be used to apply the operator that can also be used with other operators. Thus, working 
memory acts as an intermediary for actions by being the place where alternative operators are proposed, 
one is selected, and then rules apply the operator by making changes to the state. 

Propose Operators 
(rules) 

Apply Operator 
(rules) 

Select Operator 
(decision procedure) 
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3.1 Hello World Operator: English Version 
To demonstrate a very simple operator, you will now write an operator instead of a single rule to print 
“Hello World”. Operators allow you to have an action considered in multiple situations (rules that propose 
the operator), allow multiple reasons for selecting an action (rules for selecting operators), and allow 
multiple ways for doing it (rules that apply the operator). For printing “Hello World”, an operator is not 
necessary because there are no alternatives, but as soon as other actions are possible and choices must 
be made, operators become necessary. 
 
To use an operator, we need two rules: one to propose the operator and one to apply it:  
 

Propose*hello-world: 
If I exist, propose the hello-world operator. 
 
Apply*hello-world: 
If the hello-world operator is selected, write “Hello World” and halt. 
 

The first rule proposes the hello-world operator, and the second performs its actions after the operator 
has been selected. Notice that the first rule only proposes the hello-world operator. As described earlier, 
an operator is selected by Soar’s decision procedure, which collects together proposed operators and 
selects one. 
 
To see this operator run, you can either create a new agent and then destroy your previous agent (this is 
done on the same pull down menu that was used to create an agent), or you can remove all of the 
existing rules in your agent by using the “excise --all” command, which removes all of the rules 
from memory and initializes Soar. Next, load in the hello-world-operator file using source. To see the 
individual productions fire, you can modify the “watch” level. There are many different watch levels: and 
watch level 3 (and higher) includes traces of production firings.  Go ahead and set the highest level: 
watch 5. You can use the “Watch 5” button at the bottom of the interaction window or use the Debug 
Level entry in the menu bar at the top. Then click the run button. 
 
The interaction window allows you to trace the execution of Soar at many different levels (decisions, 
phases, production firings, working memory changes), but selectively view the trace by expanding and 
collapsing the trace (using the “+” and “-” items on the left of the trace) and setting filters. Make sure you 
have the “tree view,” which is set under the layout tab in the top tool bar. A standard practice is to do a full 
trace (Watch 5), but only view decisions by collapsing the trace. If an error arises, or you want to look at 
the behavior in more detail, you can expand the trace.  The button at the lower right corner of the 
interaction window allows you to toggle between “collapse” and “expand” easily.  You can then control the 
level of the trace by using the “filters” button that is next to the collapse/expand button. This allows you to 
view the trace at a high level and only dive into the details when necessary. 
 
After typing run, expand the “run” and “1: O: O1 (hello-world)” lines by clicking on the “+” signs next to 
them. The trace shows that propose*hello-world fires first to propose the operator. The operator hello-
world (O1) is then selected (by the decision procedure). After hello-world is selected, apply*hello-world 
fires and performs the actions of the operator by printing out “Hello World” and halting. 
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Operator proposed 

Operator selected 

Operator applied 
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3.2 Hello-World Operator: Soar Version 
In this case, there is a one-to-one mapping of the English rules to Soar rules. The condition of 
propose*hello-world is the same as the condition for the original hello-world rule. The difference is in the 
action, where propose*hello-world proposes the hello-world operator. A rule proposes an operator by 
creating an acceptable preference for the operator. An acceptable preference is a statement that an 
operator is as a candidate for selection. The rule below proposes the hello-world operator: 

sp {propose*hello-world 
   (state <s> ^type state) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name hello-world)} 

 
The first action creates an acceptable preference for a new operator (which is added to working memory) 
and the second action creates a working memory element that augments the operator with its name.  
 
A preference looks just like other working memory elements except that it has a fourth item: the type of 
preference, which in this case is “+”. The identifier of the preference is <s>, which means that the 
identifier matched to <s> in the condition is used in creating the action. For example, if working memory 
contained (s1 ^type state), then when this rule fired the preference would begin with (s1 
^operator. The value of the preference, <o>, is a new variable that did not occur in the condition. When 
new variables appear in actions, Soar automatically creates a new identifier and uses it for all 
occurrences of that variable in the action. For example, if o1 is the identifier created for <o>, then (s1 
^operator o1 +) and (o1 ^name hello-world) are added to working memory. For variables in 
actions, such as <o>, a different identifier is created each time a rule fires. 
 
Additional rules may create preferences to compare operators. The decision procedure selects an 
operator based on all the created preferences. If a single operator is proposed, that operator is selected. 
In this case, propose*hello-world fires creating a single acceptable preference for o1, and then the 
decision procedure selects o1 to be the current operator and adds (s1 ^operator o1) to working 
memory. Note that this working memory augmentation does not have the “+” following the value. Only the 
decision procedure can add such an operator augmentation for a state to working memory (while 
proposal rules can add acceptable preferences for operators that differ by ending with the “+”). 
 
Once the operator is selected, apply*hello-world should fire. 

sp {apply*hello-world 
   (state <s> ^operator <o>) 
   (<o> ^name hello-world) 
--> 
   (write |Hello World|) 
   (halt)} 

This rule has exactly the same actions as hello*world, but with conditions that test that the operator hello-
world has been selected. The first condition tests that some operator has been selected. We cannot 
include a specific identifier for the value (such as o1) because the exact value of the identifier can be 
different each time we run the program, so a variable, in this case <o>, is used.  
 
The second condition tests that some object in working memory has name hello-world. The rule will only 
match if both <o>’s match the same identifier (such as o1). This is true for all variables in Soar; if the 
same variable shows up multiple times in the conditions of a rule, the rule will not match (and fire) unless 
all occurrences of the variable in the rule match the same symbol in working memory. In this case, they 
both match o1, and this rule fires.  
 
If the same variable is used in multiple rules, it can match completely different identifiers or constants – 
that is, the identity of variables only matters within a rule. The exact symbols used in a variable are 
irrelevant, although as a general convention, <s> is usually used to match state identifiers and <o> is 
usually used to match operator identifiers.  

<s> in the action is replaced 
by the identifier matched by 
<s> in the condition 

Test that an operator 
has been selected 

<o> is new in the action and is 
replaced by a new, unique identifier 

+ indicates that this is an 
acceptable preference 

<o> is replaced by the same 
identifier in all actions 

Test that the selected 
operator has name hello-
world 

Both occurrences of <o> must 
match the same identifier 
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3.3 Examining Working Memory 
We can get an even more detailed look at Soar’s processing by examining the data structures in working 
memory. You can print out working memory in the Interaction Window using the print command. To print 
out all of the attributes and values that have s1 as the identifier, first click in command box below the 
interaction window, and type print s1 followed by the “Enter” key. The debugger also has additional 
windows to the right of the Interaction Window that display common structures, such as the current state, 
the current operator, etc. The topmost window on the right should already show the state. This window 
has tabs for examining different structures in working memory. You can modify the command in these 
windows by typing in a new command (such as replacing “print s1” with “print s1 –d 2”), or you can add 
new tabs or create a new window that executes different commands. You do this by right clicking on a 
blank part of the window, and a menu will appear that let’s you create a new window or a new tab. 
  

 
 
You now see all of the attributes and values that have S1 as their identifier. The attributes io, 
superstate, and type are created automatically for the state before  the program starts to run. The 
operator attribute is created when the hello-world operator (o1) is selected. Only the selected operator 
has a working memory element without the following “+”. In addition to the selected operator, the 
acceptable preference for the operator is there, marked with the "+". If there were additional operators 
proposed with acceptable preferences, there would be additional working memory elements with the 
operator attribute with the ids of the operators followed by the “+”, but for a given state there is only one 
working memory element with the operator attribute without the “+”, which signifies the selected operator. 
The attributes are ordered alphabetically when they are printed, but that is just to make it easier to find a 
specific attribute. 
 

What you typed (s1 or S1 
will work) 

+ means an acceptable 
preference for an operator 

O1 is selected operator 
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We can examine more of the structure of o1 using the print command. This time, select the operator tab 
or type p o1. The letter p means “print.” Almost all commands in Soar also have one or two-character 
shortcuts.  

 
 
Operator o1 has an augmentation with attribute name and value hello-world. We can also examine 
the augmentations of some of the other values. I1 is the value of the ^io attribute, which stands for 
input-output. To see more about input and output, print I1. However, instead of using the print or p 
command, you can use the mouse to print information about I1. (If you don’t have a mouse, just use 
print.) To do this, type print s1 again as before and move the cursor over I1 in the upper right  window, 
then press the right mouse button. A menu will appear that has a list of commands: print, preferences, 
WMEs, productions, and run. Move the mouse over the print command and click the left button once.  
 

 
 
The information for I1 now appears in the Interaction window to the left where the trace is displayed. 
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There are two attributes of io: input-link and output-link. The input-link is where an agent’s 
sensory information is available in working memory. The output-link is where action commands must be 
created for the agent to move in its world. Using the mouse, explore the structure of the input-link (I2). 
You can also try out some of the other commands available through the mouse, although we will work our 
way through them later in the tutorial. 
 
 
 
 
 
 
 
 
 
 
You now know the basic structure of rules and operators in Soar. You should be able to create your own 
agents that print out simple messages with operators.  
 

Rules augment the value of the 
output-link with motor commands 

Sensory information is added to the 
value of the input-link 

^type 

^io 

^superstate 

state 

^input-link 

^output-link  

S1 I1 

I3 

I2 
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3.4 An Introduction to VisualSoar 
To create your own Soar programs, you can use almost any editor. We recommend VisualSoar because 
it has internal support for creating Soar programs. VisualSoar can be found in the same place that the 
Soar debugger was found. On launch, a fairly blank window entitled VisualSoar will pop-up. At the top, 
click File | New Project… and you will see a new pop-up window entitled New Agent. In the new window 
under Agent Name type “water-jug” (without the quotes) and under Agent Path, click Browse (if you 
receive a “no disk” error, ignore it by simply clicking continue) and locate the folder to which you want to 
save the project to. When this is done, click New.  
 
You will see a new window on the left that should contain 5 things in the form of a tree. This is called the 
operator window. At the root is the name of your project, and the four things below it are the default files 
that are automatically created. The specifics of these four files will be explained as the tutorial proceeds. 
It is files like these that will contain the rules you write for an agent. The rules will be grouped into different 
files and file types depending on their function. It is from this window that you will control the way the rules 
are grouped together. The actual grouping of rules in VisualSoar is actually completely arbitrary to Soar 
but will make maintaining and debugging your code much easier for you. Due to this arbitrariness, do not 
feel that you can create an error by grouping your rules wrong. 
 
One of the toughest parts of writing Soar code is visualizing the tree-like structure of working memory. 
VisualSoar has a structure called the Datamap for describing working memory structure. In some ways, it 
is like making type definitions in other languages. To examine the Datamap, right-click on the root of the 
tree entitled ‘water-jug’ and click on Open Datamap in the pop-up window. Doing this displays the 
hierarchical structure of the working memory of your agent in the Datamap water-jug window. VisualSoar 
not only lets you visually construct what memory should look like, it also lets you run tests to make sure 
your code follows the proper structure, automatically finding spelling mistakes, misplaced structures, and 
so on. You can close the Datamap water-jug window by clicking on the [x] in its top-right corner. 
 
Throughout the rest of Part 1 of this manual you will write code to solve the water jug problem. Write this 
code into your Soar editor as you go. Once you get the hang of it, try and write the next step in the code 
before you look at it (make sure to double-check it with our code of course). 

The root of the tree and the 
name of your project, click 
here to open the Datamap 

 This is the Operator window 

This is the Feedback window 

This is the Datamap for 
water-jug 
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4. Creating Agents to Solve the Water Jug Problem 
This part of the tutorial will teach you how to build Soar programs that solve problems through internal 
problem solving. You will build a Soar program for a classic AI problem: The Water Jug. Other classic AI 
problems, including Blocks World, the Eight Puzzle, Missionaries and Cannibals, and Towers of Hanoi 
are included in the set of demonstration programs that comes with the Soar release. The Soar programs 
you develop will solve these problems through search and the manipulation of internal data structures. 
You will start by building the operators, state descriptions, and goal tests that are required to define the 
problem. You will also be introduced to more of the theory of problem solving based on search in problem 
spaces. In Part V, you will learn how to modify and extend to your programs so that they use planning 
and learning to solve problems. If you run into problems debugging your programs, you might want to skip 
ahead to Part II, Section 5.3, which contains details on debugging commands for Soar. 

4.1. Water Jug 
Water Jug Problem Statement: 

You are given two empty jugs. One holds five gallons of water and the other holds three gallons. 
There is a well that has unlimited water that you can use to completely fill the jugs. You can also 
empty a jug or pour water from one jug to another. There are no marks for intermediate levels on the 
jugs. The goal is to fill the three-gallon jug with one gallon of water. 
 

The first step in formulating a problem is determining the space of possible states that the problem solver 
can be in. The space of states, or problem space, is determined by the objects that are available to be 
manipulated (the two jugs) and their possible values (0-5 gallons full). A problem is then defined as an 
initial state that the problem solver starts at, (in this case two empty jugs) and a set of desired states (any 
state where the three-gallon jug has one gallon of water). Problem solving consists of starting at the initial 
state, then searching for a desired state by applying operators, which transform one state into another. 
For the water jug problem, the operators are fill a jug, empty a jug, and pour from one jug to the other.  
 
In addition to the knowledge required to formulate the problem, knowledge can be used to select which 
operator to apply at each state. In the water jug, you might have knowledge that specifies never emptying 
a jug immediately after it has been filled. In Soar, this knowledge is often called search control 
knowledge, because operator selection is the locus of all decision making in Soar. It is the one place 
where multiple alternatives can be proposed, compared and evaluated before a selection is made. An 
important part of Soar’s design is that it makes it possible to separate all of the problem formulation 
knowledge from the knowledge that is used to control the search.  
 
At an abstract level, a trace of the problem solving starts with the creation of the initial state and is 
followed by the selection and application of operators. To represent the states in the water jug problem, 
we will have two values: the amount of water in the five gallon jug, and the amount of water in the three 
gallon jug. For example: 5:0,3:0 will represent that the 5 gallon container has 0 gallons of water, and the 3 
gallon container has 0 gallons of water. Below is a trace of the optimal solution for the problem showing 
the states and the operators that are applied to each state. 
 
(5:0,3:0) Fill 3 gallon jug 
(5:0,3:3) Pour 3 gallon jug into 5 gallon jug 
(5:3,3:0) Fill 3 gallon jug 
(5:3,3:3) Pour 3 gallon jug into 5 gallon jug 
(5:5,3:1) 
 
The rest of this section will take you through all of the steps of representing the problem in Soar, including 
determining the representation of the states in working memory, creating the initial state, representing the 
operators in rules (and working memory), and so on. 
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4.2 State Representation 
For tasks that involve interaction with the outside world, much of the state structure is determined by what 
comes in via perception. For the water jug problem, we could hook up Soar to a water jug simulator (or 
real world robot) and have it issue commands to pour water into and out of jugs, but to simplify learning 
Soar, we will have Soar solve the problem through the manipulation of internal data structures. . 
Moreover, this will prepare you for planning, where your program will need to create an internal 
representation of the problem even if there is an external world. 
 
What are the parts of the problem that must be represented on the state? There are really two types of 
information: dynamic information that changes during problem solving, such as how much water is in 
each jug, and static information that doesn’t change, such as the size of each jug. 
 
So one state representation might include: 
• The amount of water each jug currently holds.  
• The amount of water each jug can hold. 
You can combine these together by having the volume of the jug as an attribute with the value being the 
current contents. Under this scheme, the initial state would look something like: 

(state <s> ^five-gallon-jug-contents 0 
           ^three-gallon-jug-contents 0) 

This is a very compact representation; however you will have to write very specific rules for proposing and 
applying operators. You will need one set of rules to propose the operators for the five-gallon jug and one 
for the three-gallon jug. 
 
A more general approach would be to represent each jug as an object that had two attributes:  
• The amount of water each jug currently holds (^contents). 
• The amount of water each jug can hold (^volume).  
In this scheme, the initial state would look something like this. 

(state <s> ^jug <j1> 
           ^jug <j2>) 
(<j1> ^volume 5 
      ^contents 0) 
(<j2> ^volume 3 
      ^contents 0) 

Note that jug is an attribute that can have multiple values at the same time. We call this a multi-valued 
attribute. Multi-valued attributes allow you to represent sets of objects, such as the set of two jugs. 
 
Using this representation, you can write one set of rules for manipulating both jugs. Although this 
representation is sufficient for defining and solving the problem, as you will see later, the rules to propose 
operators can be simplified if you add an attribute for the amount of water that can be added to a jug to fill 
it (^empty). As you will see later, the value of this augmentation can be computed dynamically using 
state elaboration rules that test the volume and contents augmentations and subtract the volume from the 
contents. Thus, states will include the following structures: 
• An object for each jug (^jug). 
• The amount of water each jug can hold (^volume). 
• The amount of water each jug currently holds (^contents).  
• The amount of empty space available in each jug (^empty). 
Although this representation is sufficient, one more working memory structure is extremely useful: a 
description of the task that is being attempted, in this case water-jug. By having some description of the 
task, the rules we create can be specific to that task and easily combined with rules from other tasks 
without interference. Thus, a common Soar convention is to label the state with information about the task 
being attempted. The simplest approach is to have a ^name attribute, where the value is the name of the 
task. For some tasks, other information is useful, but this will be sufficient for the water jug task. 
• The task name (^name water-jug) 
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4.3 Initial State Creation: The initialize-water-jug Operator 
In order for Soar to start on a problem, the structures of initial state must be in working memory. For tasks 
involving interaction with an external environment, much of the state will be created by the perceptual 
information that comes in from sensors. That information would be created on the input-link structure of 
the state. But for this task, we are assuming there is no external environment, so the initial state must be 
created by rules that you add to the system.  
 
Thus, the first step is to define an operator that will create the initial state. By using an operator instead of 
a single rule, the act of initialization is a choice that can be controlled – that is, the operator to initialize the 
problem will be proposed and a decision will be made whether to do it. If other tasks are possible, the 
agent can decide which task will be attempted by using control knowledge to pick among the different 
initialization operators. 
 
The first step in creating an operator is to write down the proposal rule in English.  
 
Type the English versions of the proposal and application rules for the initialize-water-jug operator. These 
versions will be documentation, so we have to tell Soar to ignore them. You can do this by starting each 
line with the pound-sign (“#”). Soar ignores lines that start with a pound sign.  
 
In Soar, the name of the rule can be almost any string of characters, but it is a good idea for it to be a 
meaningful summary of the purpose of the rule. A useful convention is to split the name into parts 
separated by asterisks (“*”). The first part is the task, the second part is the function (propose, apply, 
elaborate), and the third is the name of the operator. There may be additional parts for more details of 
what the rule does. 
 
As with every operator, we must define two types of rules: one to propose the operator and one to apply 
the operator. This operator should be proposed only at the beginning, before any task is selected. Thus, 
the proposal should be:  
 
water-jug*propose*initialize-water-jug 
If no task is selected,  
then propose the initialize-water-jug operator.  
 
Writing this rule in Soar is a challenge given what you know so far. How can you test that no task has 
been selected or that no jugs are defined? In Soar it is possible to test for the absence of working 
memory elements by preceding the attribute with “-“. Every rule in Soar must have at least one positive 
condition, so you still need to test that the state exists and in this case we use (^superstate nil). 

 
sp {water-jug*propose*initialize-water-jug 
   (state <s> ^superstate nil) 
  -(<s> ^name)  
   --> 
   (<s> ^operator <o> +) 
   (<o> ^name initialize-water-jug)} 

 
VisualSoar – The purpose of this production is to propose the operator that will initialize the water-jug. If 
you look at the operator window in VisualSoar you will see that the file at the bottom is titled “initialize-
water-jug.”  This is created automatically when you created the water-jug project because a standard 
practice is to use an initialization operator for a new task. Either double-click on that file or right-click on 
the file and click Open Rules. This will open up a rule editor in which you will see two rules already 
partially written. The initialization written above is a very standard one, and because of this VisualSoar 
automatically creates a template of it for you (it is the first rule at the top). It may look a little different 
because VisualSoar uses a few shortcuts that you will learn later, feel free to leave it how it is or change it 
to the way it is above, it will not matter. Leave this rule window open. 
 

Test that there is no task. 
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Just a reminder that the order of the conditions don’t matter except that the first condition must be a 
positive test of the state. Thus, there is no difference between the above rule and one where the test for 
the absence of the jug comes before the absence of the name. Soar analyzes the rule and automatically 
reorders the conditions in order to improve the efficiency of matching the rules.  
 
The second condition will match only if there is not any working memory element on the state with 
attribute name. The condition does no test for a value, because it doesn’t matter what the value is. You 
could include variables in the value position (such as <name>) if you wanted, and that would not change 
the meaning of the rule. 
 
All the conditions test attributes of the same object (the state), and you can simplify the rule by combining 
these conditions (just as VisualSoar did) into a single structure where the identifier (<s>) is followed by 
the attributes: 

 
sp {water-jug*propose*initialize-water-jug 
   (state <s> ^type state 
             -^name) 
   --> 
   (<s> ^operator <o> +) 
   (<o> ^name initialize-water-jug)} 

 
Soar automatically translates this structure into the one above. 
 
To apply the initialize-water-jug operator, we need another rule. The initialization application rule adds the 
name to the state and creates the jugs with contents of 0. The rule needs to add working memory 
elements for the initial values of the jugs and their attributes. 
 
water-jug*apply*initialize-water-jug 
If the initialize water-jug operator is selected,  
then create an empty 5 gallon jug and an empty 3 gallon jug. 
 

sp {water-jug*apply*initialize-water-jug 
   (state <s> ^operator <o>) 
   (<o> ^name initialize-water-jug) 
   --> 
   (<s> ^name water-jug 
        ^jug <j1>  
        ^jug <j2>) 
   (<j1> ^volume 5 
         ^contents 0) 
   (<j2> ^volume 3 
         ^contents 0)} 

 
This rule does not include the creation of the ^empty attribute – it will be created by another rule that 
dynamically computes it based on the volume and contents (see Section 4.5). 
 
VisualSoar – In the initialize-water-jug rule window you will notice that VisualSoar has attempted to write 
this rule for you also. The application of initializing the water-jug is not as standard as the proposal and 
VisualSoar is not able to initialize all of the attributes that this project will need. Modify the second rule in 
the rule window to match the rule above.  
 
Now, at the top of VisualSoar, click on Datamap | Check All Productions Against the Datamap. In the 
feedback window at the bottom you will see a list of blue warnings. What you just did was make 
VisualSoar check all of your rules to see if they matched the Datamap for this project. Recall that the 
Datamap is a representation of the structure of working memory. Since you just added new 
augmentations to the state in your rule, but not to the Datamap, warnings are created. To fix this, right-
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click in the operator window on “water-jug” and click on Open Datamap so that now you have the 
Datamap and initialize-water-jug windows open. You will notice that VisualSoar has already included the 
structure for the Initialize-water-jug operator – this is automatically created whenever a new operator is 
added to the operator set. The Datamap is a hierarchical structure that looks like folders and files as in 
the operator window, but it is really the structure of working memory. The folders are used to represent 
working memory elements (such as operator) whose values are identifiers, and thus can have 
substructure. The file-like structures are attributes that have constants as values – either sets of symbols 
(enumeration), integers, floating point numbers (floats), or strings. You must now add entries into the 
Datamap for the water-jug state structure.  
 

 
 
What you need to add to the Datamap are the jug structures that are created by initialize-water-jug and 
that will be used by the remaining operator. In order to add a new attribute to the Datamap, you start by 
right clicking on the “water-jug” folder in the Datamap (not in the operator window). The water-jug folder in 
the Datamap represents the top-state structure in Soar. After right-clicking, a menu will appear that let’s 
you select the type of value that will be associated with the attribute you are creating.  Since the jug 
attribute will have an identifier as its value, select “Add Identifier …”  
 

 
 
 
 
 

Initialize-water-jug operator – 
automatically created 

File-like structures for attributes with constant values: integers, floats, strings, enumerations 

Folder structures for attributes with identifier 
values, which can have substructure 
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You will then be prompted for the attribute name. Type in “jug”.  
 

 
 
This will add the jug structure to the Datamap. You can now right click on the jug structure, and select 
“Add Integer …” to add the contents attribute to the jug structure. Type in the name, and then repeat this 
for the empty and volume attributes. If the attribute had values that were different possible symbols, you 
would use the “Add Enumeration …” selection.  Your screen should now look like this:  
 

 
 
Now have VisualSoar check all productions against the Datamap (using the command under the 
Datamap tab in the toolbar), you should have no errors. Make sure to save and feel free to close the 
Datamap and initialize-water-jug windows. 
 
In the above rule, the variable <o> is used to connect the first condition to the second. To simplify the 
writing and reading of rules, Soar allows you to combine conditions that are linked by variables. To do 
this, you can just string together attributes, replacing the intermediate variables with a period, “.”, to 
separate the attributes. In Soar, we call this “dot” or “path” notation. Below is the same rule as before 
using dot notation. 
 

sp {water-jug*apply*initialize-water-jug 
   (state <s> ^operator.name initialize-water-jug) 
   --> 
   (<s> ^name water-jug 
        ^jug <j1>  
        ^jug <j2>) 
   (<j1> ^volume 5 
         ^contents 0) 
   (<j2> ^volume 3 
         ^contents 0)} 

. replaces <o> 

The folder “jug” 
has been added to 
the Datamap. 
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4.4 Persistence of Working Memory Elements  
When the water-jug*apply*initialize-water-jug rule fires, all of the structures in its action are 
added to working memory. At this point, it would be desirable for the initialize-water-jug operator to be 
removed from working memory so that other operators can be selected. This is exactly what Soar does 
because the conditions of the proposal rule no longer match (the conditions testing for the absence of a 
task and the absence of the jug augmentation fail to match because those structures have been added to 
working memory). Once that rule retracts, the rule that applied the operator also no longer matches 
because the operator is no longer in working memory. However, we do not want the application rule to 
remove the structures it created when it no longer matches. If it did, the system would never be able to 
make any real progress – it would get in an infinite loop of proposing and applying an operator, retracting 
its results, and then proposing and applying the operator again. 
 
In order to support the different needs of different problem solving functions (in this case operator 
proposal and operator application), Soar makes a distinction between the persistence of working memory 
elements created by operator application rules and the persistence of working memory elements created 
by other types of rules. Operator application needs to create persistent results because operators are the 
deliberate commitments that the system has made – it has decided to apply the operator and make 
potentially non-monotonic changes to the state – to move itself to a new state in the problem space. All 
other rules in Soar compute the entailments/elaborations of the current state without actually changing it 
and should be retracted when they no longer match the current state. This is a very important feature of 
Soar – it makes a distinction between knowledge that modifies the current state (knowledge in operator 
applications), and knowledge that just computes the entailments of the current situation (including which 
operators should be considered for the current state). 
 
Soar automatically classifies rules as to whether they are part of an operator application or not. A rule is 
an operator application rule if it tests the selected operator and modifies the state. The working memory 
elements created by such a rule persist and are said to have operator-support, or o-support because they 
are created as part of an operator. These working memory elements can be removed by other operator 
applications rules (this type of removal has yet to be introduced in the tutorial), or if they become 
disconnected from the state (because of the removal of other working memory elements). 
 
For non-operator application rules, including rules that propose an operator, rules that compare 
operators, rules that elaborate operators, or rules that elaborate the state, the working memory elements 
created by the rules are removed from working memory if the rule no longer matches. These working 
memory elements are said to have instantiation-support or i-support – meaning they will persist only as 
long as the rule instantiation that created them still matches.  
 
We will examine the persistence of working memory elements in more detail when we create the rules for 
the Water Jug, but this is a fundamental and sometimes difficult part of Soar for people to learn. It 
differentiates Soar from most other rule-based systems that don’t have rules that automatically retract 
their results when they no longer match and it gives Soar its own Truth-Maintenance System (TMS).  
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4.5 Water Jug State Elaboration  
The initialization operator creates jugs that include the volume and content. As mentioned earlier, it will be 
useful for each jug to include the amount of additional water that can be added to it before it is full. 
Although this could be created by the initialization operator, it would have to be maintained by every 
operator application and that would make the operator application rules more complex. An alternative is 
to compute the available volume for each jug in the state with a separate rule. This rule will test the state 
and create a new structure on the state. This type of rule is called a state elaboration rule. State 
elaboration rules are ubiquitous in large Soar systems because they can create useful abstractions of 
combinations of other working memory elements and represent them directly on the state as a new 
augmentation. These new augmentations can then be tested in other rules in place of complex 
combinations of conditions, simplifying rules and making the structures in working memory more 
meaningful. A critical aspect of state elaboration rules is that they create i-supported working memory 
elements so that when the parts of the state they test change, they recompute their actions automatically. 
 
For the Water Jug problem, the state elaboration will compute the amount of empty space in a jug: 
 
water-jug*elaborate*empty 
If the state is named water-jug and a jug can hold volume v and currently has 
contents c, then add that it has v – c available (empty) space. 
 
The first condition that it tests is that the state is named water-jug, so that it will only apply for water-jug 
problems. This test will be included in all of the water jug rules. It then tests that there is a jug and adds 
an appropriate empty attribute. Translating the conditions of this rule to Soar is straightforward. We have 
to include conditions for the jug, its volume and its contents. 
 
The action requires adding a new attribute to the jug (thus using the same variable as matched in the 
condition, <j>) and then computing the value by doing some math. In Soar, all math is done using prefix 
notation where the math operations (+, -, *, /) come before the arguments, with parentheses surrounding 
the computation. For example, if the value was going to be the sum of <v> and <c>, you would put (+ 
<v> <c>) where the value should be (right after the ^empty attribute). You can nest operations using 
additional parentheses, such as (+ 2 (* <v> <c>)) to add 2 to the product of <v> and <c>, but for 
this case, nesting is not necessary. See if you can write the rule yourself before looking below: 
 

sp {water-jug*elaborate*empty 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^volume <v> 
        ^contents <c>) 
   -->  
   (<j> ^empty (- <v> <c>))} 
 

When the contents of a jug changes through an operator application rule, this rule will retract the old 
value of ^empty and fire to compute a new value.  
 
VisualSoar – This rule is an elaboration.  VisualSoar has a folder named elaborations in the operator 
window to hold files for state elaborations. Right-click on this folder and click “Add a File…”. You will see a 
text box pop-up. In the Name category type “empty” and click OK. Expand the elaborations folder and you 
should see the file you just created and two default files named “_all” and “top-state.” These files are 
provided for all Soar programs and have a few simple rules that are useful for tasks with substates. You 
should now open the “empty” file by double clicking on it. You can add the rule from scratch and just type 
it in, or you can use a template. To use a template, click on Insert Template in the toolbar and select 
elaborate-state. That will give you the basic structure of an elaboration rule. Just as before, check your 
file against the Datamap.

The value for this augmentation is the 
result of the subtraction. 
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4.6 Water Jug State Initialization and Elaboration 
At this point you should have written your initialization rule and the state elaboration rule into your Soar 
editor. Make sure to save this file then start up the Soar Debugger and load these rules in using the 
source command.  
 
Now set the watch level to 5 and expand the trace so you can see rules fire and the creation on working 
memory elements. 
 
As you step through the execution,  

1. The water-jug*propose*initialize-water-jug rule fires to propose the initialization 
operator. Expand the plus sign next to 1:O: O1 (initialize-water-jug)  

2. The operator and the acceptable preference for it are added to working memory: (s1 
^operator o1 +), (o1 ^name initialize-water-jug). The “+” signifies that the 
operator is proposed and not selected. 

3. The initialization operator is selected by the decision procedure. 
A working memory element is added to working memory to indicate that the operator is selected: 
(s1 ^operator o1). Note that the operator preference is still in working memory. 

4. The application operator fires and creates the jugs on the state and the name. 
5. The operator proposal retracts because the condition that tests for the absence of the name fails 

and the water-jug*elaborate*empty rule fires twice, once for each jug, and computes the empty 
augmentation for each of the jugs. 

6. A substate is created (ignore for now) because there are no other rules to fire. 
Note that in number 4, water-jug*elaborate*empty fires twice because there are two jugs and this rule 
matches successfully with each jug. Each of these matches is called an instantiation. An instantiation 
consists of a set of working memory elements that successfully match a rule. In this case, there will be 
two sets of three working memory elements that are completely separate. Sometimes a rule will have 
multiple instantiations that share some of the same working memory elements, while in other cases such 
as this one, they are all different.  
 
Given that there are two instantiations, which one should fire first? There really is no way to say that one 
is more important than another, and in Soar, we attempt to avoid decisions when we really don’t have to 
make them, so in Soar, all rules that newly match fire at the same time, in parallel. Of course the Soar 
program is running on a serial computer (usually), so it isn’t really in parallel, but for all intents and 
purposes, the rules fire in parallel. This is very different than most programming languages and can be 
confusing (and liberating) because you will find that rules fire as soon as they match. 
 
Below is a more complete look at Soar’s basic cycle. For this problem there is no input and output, so 
those boxes are skipped. Starting at the left, rules fire (or retract) that elaborate the state or propose 
operators. There might be multiple rules firing (or retracting) in parallel, and the results of one rule firing 
(or retraction) might lead to additional rules firing (or retracting), and Soar continues to fire these waves of 
rules until there are no new firings (or retractions). Once there are no more rules to fire (or retract), 
quiescence is reached and the decision procedure is entered to select the operator. This approach 
guarantees that when a decision is made, all of the available knowledge from rules is available.  
 
After the operator is selected, rules that apply the operator can fire. Operator application will usually lead 
to firing and retracting of state elaboration and operator proposal rules and that will also happen during 
the operator application phase. When that phase reaches quiescence, output and then input are 
processed followed by the first phase described above. In tasks where there is an external environment, 
many operators require action in the world, and so changes to the state will appear during input. In the 
water jug task, all state changes happen in operator application, so that the elaborate state and propose 
operator phase do not lead to additional rule firings after the first time through the cycle. 
 

Elaborate State 
Propose Operators 

Apply Operator 
 

Select 
Operator 

Output Input 
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4.7 Water Jug Operator Proposals  
In the Water Jug problem, there are three operators: fill, empty, and pour. In this section we will create the 
rules that propose these operators. One thing Soar lets us do is separately compute when an operator 
can apply (proposal rules that create acceptable preferences for operators) from when it should apply 
(search control rules that create other types of preferences).  
 
Listed below with each operator are the conditions under which an operator is legal. These conditions will 
be the basis for the operator proposals.  
• Fill a jug with water from the well, if that the jug is not full. 
• Empty the water from a jug to the well, if there is water in the jug. 
• Pour water from one jug to another jug, if there is water in the source jug and the destination jug is 

not full. 
 
Although one could attempt to fill a jug that is already full; in Soar, operators must change the state in 
some way so that another operator can be selected. Thus, in our formulation, filling a full jug must be 
disallowed. Now write English descriptions of the proposals.  
 
water-jug*propose*fill 
If the task is water-jug and there is a jug that is not full,  
then propose filling that jug. 
 
water-jug*propose*empty 
If the task is water-jug and there is a jug that is not empty, 
then propose emptying that jug. 
 
water-jug*propose*pour 
If the task is water-jug and there is a jug that is not full and the other 
jug is not empty,  
then propose pouring water from the second jug into the first jug. 
 
Each of these rules can potentially match either one of the jugs.  
 
In translating these rules into Soar, we need to write the tests in the conditions, but we also need to write 
actions that will create the operator. The hello-world and initialization operators were just a name; 
however, with these new operators, you want to have some parameters that specify which jugs are being 
filled, emptied, or poured. If you really wanted to, you could encode everything in the name of the 
operators, but then we would need six different operators, such as “fill-jug-three” or “pour-jug-five-into-jug-
three”, and this would require separate rules to apply each of those operators. Instead, by having 
parameters with the operators, you can have fewer rules that apply the appropriate changes to the state. 
For this task, a set of operator parameters and possible labels are listed below: 
• The name of the operator: ^name fill/empty/pour.  
• The jug that is being filled by the fill operator: ^fill-jug <j>. 
• The jug that is being emptied by the empty operator: ^empty-jug <j>. 
• The jug that is being poured out of by pour: ^empty-jug <j1>. 
• The jug being poured into by pour: ^fill-jug <j2>. 
 
 
For example, with this representation, the operator representation for pouring from jug <j1> to <j2> would 
be: 

(<o> ^name pour 
     ^empty-jug <j1> 
     ^fill-jug <j2>) 
 

There are lots of other possibilities and it is not necessary to share the name of the parameters between 
the pour operators and the others. 
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Now try to write the first proposal as a Soar rule for proposing fill. The only test besides the name of the 
state is that the jug is not full. Using what you know already, one way to write this rule is: 
 

sp {water-jug*propose*fill 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> -^empty 0) 
   -->  
   (<s> ^operator <o> +) 
   (<o> ^name fill  
        ^fill-jug <j>)} 
 

This rule tests that jug <j> does not have an empty augmentation of 0. This is a double negative, and 
although correct in the context of what has been written, it is difficult to understand. An alternative is to 
test that the ^empty augmentation has a value greater than 0. Soar supports simple tests in conditions 
including greater than (>), greater than or equal (>=), less than (<), less than or equal (<=), and not equal 
(<>). The tests are associated with the value (or variable) that follows them. So an alternative way to write 
this rule is:  
 

sp {water-jug*propose*fill 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^empty > 0) 
   -->  
   (<s> ^operator <o> +) 
   (<o> ^name fill  
        ^fill-jug <j>)} 

 
Another alternative condition would be to replace the test of empty being greater than zero with a test that 
the contents don’t equal the volume: (<j> ^volume <v> ^contents <> <v>).  
 
One alternative that is not possible is to do some simple math in the conditions to test whether the volume 
minus the contents equal 0. Soar does not allow any math in conditions – you should use elaborations 
instead so that the math is always done in actions. 
 
VisualSoar – If you look in the operator window in VisualSoar, you will not see anything relating to a “fill” 
operator . You need to create a new operator file that will hold all of the rules related to fill. To do this, 
right-click on “water-jug” in the operator window and click on “Add a Suboperator…”, name it “fill” and click 
OK. Open the newly created fill operator and add the rule above (using the propose operator templates).  
 
When finished adding the rule, open the Datamap. You will notice that an operator structure for fill has 
automatically been created, but you need to add empty-jug as an attribute. The value for empty-jug is an 
identifier, but it is really the same structure as a jug on the state. So instead of creating a new empty-jug 
structure from scratch, we want to create a “link” from empty-jug to the state jug structure. Note, we don’t 
want a copy of the jug structure, because if the jug substructure changes, we want those changes 
reflected in the empty-jug structure. To create the link is the “trickiest” operation in VisualSoar. First, left-
click and hold (don’t let up on the left-mouse button!) on the “jug” structure on the state. Then with drag 
that structure onto the fill operator structure in the Datamap. If you let up on the button now, it would 
move the jug structure, but we want to create a link. To do that, hold down the “ctrl” and “shift” keys 
(usually with your left hand). This should make a new icon appear that has a little arrow (see diagram 
below). Then let up on the mouse button (while keeping “ctrl” and “shift” down. This will create an attribute 
of the operator with name “jug”. (Note: sometimes the display of the Datamap in VisualSoar is not 
correctly updated. You might need to close the Datamap and reopen it for it to refresh correctly).  
 
 

Numeric comparison in condition: 
Tests that value must be greater than zero 

Tests that the jug does not have 0 
available space – it is not full. 
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At this point, you should rename the attribute. Do this by right-clicking on the attribute, and then select 
“Rename Attribute …” from the menu. Type in “fill-jug” and then click OK. 
 

 
 

Holding down ctrl + shift while pressing the 
mouse button will change the mouse icon. 

Release mouse, then release ctrl + shift 
while over top of the operator : [ fill ] folder. 

Click and hold down left mouse button 

Drag mouse to the operator : [ fill ] folder 

jug has been linked 
to operator : [ fill ] 
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Now try to write the proposal for emptying a jug. This requires only minimal changes to the previous rule, 
changing the test that a jug is not full to a test that the jug is not empty. 
 

sp {water-jug*propose*empty  
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^contents > 0) 
   --> 
   (<s> ^operator <o> +)  
   (<o> ^name empty 
        ^empty-jug <j>)} 

 
VisualSoar – This is very similar to before. Add a suboperator (just like “fill”) called “empty” to water-jug, 
type in the rule, and create the Datamap entries for it.  
 
Writing the third proposal for pour requires a test that one jug is not empty (so it can have water poured 
from it) and the other jug is not full (so water can pour into it). You might think that this is a simple 
combination of the tests in the previous two rules so that the rule should be:   
 

 sp {water-jug*propose*pour*wrong 
    (state <s> ^name water-jug 
               ^jug <i>  
               ^jug <j>)  
    (<i> ^contents > 0) 
    (<j> ^empty > 0) 
    -->  
    (<s> ^operator <o> +) 
    (<o> ^name pour  
         ^empty-jug <i>  
         ^fill-jug <j>)} 

 
This rule is not correct because the tests for jug <i> and jug <j> can match the same jug. That is because 
there is nothing in Soar that prevents different conditions from matching the same working memory 
element. For example, if working memory holds (s1 ^jug j1) (j1 ^contents 3 ^empty 2 
^volume 5), this rule would create a proposal for a pour operator that would pour from jug j1 to itself 
because it would successfully match the conditions for both <j> and <i>. To correct this rule, the 
conditions must be modified so the <i> and <j> can not match the same identifier, that is, that <j> is not 
equal to <i>. That test in Soar is <> <i>. But where should that test be added in the rule? In Soar, multiple 
tests of a value (and multiple tests for an identifier or attribute) can be specified by surrounding all of the 
tests with curly brackets: { … }. In this case, we can combine the test for <j> with <> <i> to be {<j> <> 
<i>}. This demonstrates both the use of curly brackets and the use of not equals. Note that the test could 
also be { <> <i> <j> } and it would mean exactly the same thing – what matches in this position cannot 
equal <i> and must equal <j>.  
 

 sp {water-jug*propose*pour 
    (state <s> ^name water-jug 
               ^jug <i>  
               ^jug { <j> <> <i> })  
    (<i> ^contents > 0) 
    (<j> ^empty > 0) 
    -->  
    (<s> ^operator <o> +) 
    (<o> ^name pour  
         ^empty-jug <i>  
         ^fill-jug <j>)} 

 

Incorrect: both <j> and <i> could match 
same jug. 

Correct: match <j> and not equal to <i>. 
Must have space before and after <>. 
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VisualSoar – Once again this is very similar to before. Add a suboperator (just like “fill”) called “pour” to 
water-jug, type in the rule, and add the Datamap entries for it.  
 
Now that you have all of the proposals written, you can load them in with your other rules. What happens 
when you run them? You will see that only water-jug*propose*fill matches in the initial state. It fires twice 
since it matches both jugs, right after ^empty is added to each jug. What happens next?  When Soar does 
not have enough knowledge to select between the two operators, it has a tie impasse and it automatically 
creates a substate where it can do reflective problem solving to decide what to do next. We will cover 
substates in a later section. For now, we just want Soar to select randomly between these operators. You 
can tell Soar that it doesn’t matter which operator is selected by creating an indifferent preference, using 
“=” for the operator. This can be created in the same rule that proposes the operator.  
 

sp {water-jug*propose*fill 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^empty > 0) 
   -->  
   (<s> ^operator <o> + 
        ^operator <o> =) 
   (<o> ^name fill  
        ^fill-jug <j>)} 

 
The two actions for ^operator can be shortened by using just: 

   (<s> ^operator <o> + =) 
which means create an acceptable and indifferent preference (you always need the acceptable 
preference, even if there are other preferences created). You should modify all of the operator proposals 
to include the = preference. 

 

Indifferent preference will lead to a 
random selection and avoid an impasse. 
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4.8 Operator Application 
The next step is to write the operator application rules that will fire once an operator is selected. In the 
Water Jug problem, your rules apply operators by adding and removing working memory elements to 
reflect the pouring of the water.  
 
What keeps the operator application productions from applying over and over again? When the operator 
rules apply, they change the part of the state either directly (through rules that change working memory) 
or indirectly (by doing some action in the world that changes what the Soar agent perceives – more on 
that in later sections). These changes will cause the acceptable preference for the selected operator to 
retract because at least one of the working memory elements that matched the proposal rule changed. 
The changes to working memory will cause new matches of proposal rules, which will be followed by the 
selection of a new operator, its application, and so on.  
 
Given the state representation used in this problem, there are two different ways that the operators can 
change the state representation. The most straightforward is to add and delete the ^contents attributes 
of the jug objects. However, the operators could also remove a jug and create a completely new jug 
object with the correct contents and volume attributes. Although this is less efficient, it has some 
advantages for planning and we will return to this approach in Part IV. For now you should write operator 
application rules that modify the ^contents attribute of the jug objects (it is not necessary to modify the 
^empty attribute because it will be automatically recomputed whenever the ^contents change). 
 
In the Water Jug, there are three separate operators and each one requires its own operator application 
rules. We will examine them one at a time. The first is fill. Try to write an English version of its operator 
application rule.  
 
water-jug*apply*fill 
If the task is water-jug and the fill operator is selected for a given jug, 
then set that jug’s contents to be its volume. 
 
This rule requires replacing the current value of the contents with a new value (the volume). To replace a 
value in Soar, you must remove the original working memory element and create a new one. There is no 
way to just replace the value field in an existing working memory element. This is an important attribute of 
Soar – all changes require the addition or deletion of working memory elements. You cannot modify a 
working memory element once it is created. You already know how to create a working memory element. 
To delete one, you specify the working memory element in the action but with a minus “-“ at the end.  

 
sp {water-jug*apply*fill  
    (state <s> ^name water-jug 
                                ^operator <o> 
               ^jug <j>) 
    (<o> ^name fill  
         ^fill-jug <j>) 
    (<j> ^volume <volume>  
         ^contents <contents>) 
    -->  
    (<j> ^contents <volume>)  
    (<j> ^contents <contents> -)} 

 
VisualSoar – In VisualSoar, we group all of the rules for an operator in a single file. In this case, you 
should reopen the fill operator file, and add this rule (using a template) directly under water-
jug*propose*fill. 
 
 
 
The rule to apply the empty operator is essentially the inverse of fill. 

To remove a working memory element, 
use “-“.  



   

 Soar Tutorial  

36 

 
water-jug*apply*empty 
If the task is water-jug and the empty operator is selected for a given jug, 
then set that jug’s contents to be 0 and its empty to be its volume. 
 

 sp {water-jug*apply*empty 
    (state <s> ^name water-jug 
               ^operator <o> 
               ^jug <j>) 
    (<o> ^name empty  
         ^empty-jug <j>) 
    (<j> ^volume <volume>  
         ^contents <contents>) 
    -->  
    (<j> ^contents 0  
         ^contents <contents> -)} 

 
This rule shows a shortcut in that two changes to working memory that involve the same identifier can be 
written without repeating the identifier. 
 
VisualSoar – Once again, put the application of empty in the same file that holds the proposal of empty. 
 
The pour operator is more complex because there are two different situations. One situation is where 
pouring the water into the jug being filled can hold all of the water being poured in, such as pouring from 
the three gallon jug into an empty five gallon jug. The other situation is where the jug being filled cannot 
hold all of the water, so that some water is left in the source jug, such as when pouring from the full five 
gallon jug into an empty three gallon jug. As a result, we have to write two rules that cover these two 
situations.  
 
water-jug*apply*pour*will-empty-empty-jug 
If the task is water-jug and the pour operator is selected,  
   and the contents of the jug being emptied are less than or equal to  
   the empty amount of the jug being filled,  
then set the contents of the jug being emptied to 0; 
     set the contents of the jug being filled to the sum of the two jugs. 
 

 sp {water-jug*apply*pour*will-empty-empty-jug 
    (state <s> ^name water-jug 
               ^operator <o>) 
    (<o> ^name pour  
         ^empty-jug <i>  
         ^fill-jug <j>) 
    (<j> ^volume <jvol>  
         ^contents <jcon>  
         ^empty <jempty>) 
    (<i> ^volume <ivol>  
         ^contents { <icon> <= <jempty> }) 
    -->  
    (<i> ^contents 0  
         ^contents <icon> -) 
    (<j> ^contents (+ <jcon> <icon>)  
         ^contents <jcon> -)} 

 
VisualSoar – Put this rule, along with the next one, into the file containing the proposal for pour. 
 

To remove a working memory element, 
use “-“.  
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This rule shows why it is useful to have the ^empty augmentation on the jugs. Without it, it would be very 
difficult to have the test that the jug being filled could hold the water from the jug being poured from.  
 
water-jug*apply*pour*will-not-empty-empty-jug 
If the task is water-jug and the pour operator is selected, and  
   the contents of the jug being emptied are greater than the empty amount  
   of the jug being filled,  
then set the contents of the jug being emptied to its contents minus the    
     empty of the jug being filled; 
     set the contents of the jug filled to its volume. 
 

 sp {water-jug*apply*pour*will-not-empty-empty-jug 
    (state <s> ^name water-jug 
               ^operator <o>) 
    (<o> ^name pour  
         ^empty-jug <i>  
         ^fill-jug <j>) 
    (<i> ^volume <ivol>  
         ^contents { <icon> > <jempty> }) 
    (<j> ^volume <jvol>  
         ^contents <jcon>  
         ^empty <jempty>) 
    -->  
    (<i> ^contents (- <icon> <jempty>)  
         ^contents <icon> -) 
    (<j> ^contents <jvol> 
         ^contents <jcon> -)} 

 
Now that you have written both operator proposals and application rules, you can load them into Soar and 
try them out. It may be difficult to follow the problem solving, so before running your program you should 
probably add the monitoring rules described in the next section. 
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4.9 State and Operator Monitoring  
Monitoring rules are useful for printing out the details of the operator being applied and the contents of 
each state. Below are four rules that monitor the selected operator and the state (one rule for each 
operator and one for the state). One of the nice things about Soar is that all of the monitoring rules fire in 
parallel with the other rules and don’t interfere with the problem solving at all.  
 
The write command concatenates all of its arguments, which can include constants and variables. To 
make the output readable, you want to have a linefeed before writing out any text, using the (crlf) 
command, which stands for carriage-return and linefeed. 
 

 sp {water-jug*monitor*state  
    (state <s> ^name water-jug 
               ^jug <i> <j>) 
    (<i> ^volume 3 ^contents <icon>) 
    (<j> ^volume 5 ^contents <jcon>) 
    -->  
    (write (crlf) | 3:| <icon> | 5:| <jcon> )} 
 
 sp {water-jug*monitor*operator-application*empty 
    (state <s> ^name water-jug 
               ^operator <o>) 
    (<o> ^name empty 
         ^empty-jug.volume <volume>) 
    --> 
    (write | EMPTY(| <volume> |)|)} 
 
 sp {water-jug*monitor*operator-application*fill 
    (state <s> ^name water-jug 
               ^operator <o>) 
    (<o> ^name fill  
         ^fill-jug.volume <volume>) 
    --> 
    (write | FILL(| <volume> |)|)} 
 
 sp {water-jug*monitor*operator-application*pour 
    (state <s> ^name water-jug 
               ^operator <o>) 
    (<o> ^name pour  
         ^empty-jug <i> 
         ^fill-jug <j>) 
    (<i> ^volume <ivol> ^contents <icon>) 
    (<j> ^volume <jvol> ^contents <jcon>) 
    --> 
    (write | POUR(| <ivol> |:| <icon> |,| <jvol> |:| <jcon> |)|)} 
 

 
With these rules, your program will apply operators and pour water. At some point it might even reach the 
desired state; however, it will not recognize that state and it will just keep going. 
 
VisualSoar – The logical place to add these rules is in a new file called “monitor” in the elaborations 
folder. 
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4.10 Desired State Recognition 
The final step in creating a program that not only solves Water Jug, but knows that it solved it is 
generating a rule that recognizes when a desired state has been achieved. You need to write a rule that 
recognizes when the three-gallon jug has one gallon in it. The action of the rule should be to print out a 
message that the problem has been solved and halt. Write an English version of this rule. 
 
water-jug*detect*goal*achieved 
If the task is water-jug and there is a jug with volume three and contents 
one, write that the problem has been solved and halt. 
 
Translating this into Soar is relatively straightforward. 
 

sp {water-jug*detect*goal*achieved 
   (state <s> ^name water-jug 
               ^jug <j>) 
   (<j> ^volume 3 
        ^contents 1) 
--> 
   (write (crlf) |The problem has been solved.|) 
   (halt)} 

 
Another approach that is often used is to create a representation of the desired state in working memory 
and write a rule that compares that desired state to the current state. There are two advantages to this 
approach. First, if you want to try to solve many different Water Jug problems, a new desired state can be 
attempted by modifying working memory (possibly by getting input from a sensor) instead of changing a 
rule. Second, in many problems, the description of the desired state can be used to guide the search 
using a technique called means-ends analysis. Using means-ends analysis in Soar will be included in a 
future tutorial.  
 
Below is an example rule that creates the desired state, which in this case is the three-gallon jug 
containing 1 gallon. This rule will fire when the initialization operator is selected, in parallel with the other 
initialization rule.  
 

 sp {water-jug*apply*initialize*create*desired-state 
    (state <s> ^operator.name initialize-water-jug) 
    --> 
    (<s> ^desired.jug <k>) 
    (<k> ^volume 3  
         ^contents 1)} 
 

Below is the modified goal recognition rule. It compares the contents and volume of the desired jug to one 
in the current state. This rule is correct only for desired states that describe a single jug. If the desired 
state required specific amounts in each of the two jugs, a more elaborate rule would be required.  

 sp {water-jug*detect*goal*achieved 
    (state <s> ^name water-jug  
               ^desired.jug <dj> 
               ^jug <j>) 
    (<dj> ^volume <v> ^contents <c>) 
    (<j> ^volume <v> ^contents <c>) 
    --> 
    (write (crlf) |The problem has been solved.|) 
    (halt)} 

 
If you add these to the earlier rules, the program will halt; however, it can take a long time. When I ran it 
ten times, it took an average of 168 decisions to solve the problem, with a range of 4 (the optimal) to 428.  
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VisualSoar – There were two different ways of writing the rule(s) that detects the desired-state. In each 
case, the purpose of the rule named water-jug*detect*goal*achieved is to continually monitor the state to 
see if the goal has been reached. Because the purpose of this rule is to monitor, it makes sense to create 
a new file (possibly named “goal-test”) in the elaborations folder and enter it there. If you chose to go with 
the second way of writing the goal detection, then where should water-jug*apply*initialize*create*desired-
state be placed? Since it tests the initialize-water-jug operator, it naturally should be added to the folder 
that holds that operator. Remember, how you group your rules is completely up to you. It makes sense to 
think of grouping in VisualSoar as an advanced way to comment code: it doesn’t affect the way the code 
is interpreted by the computer, but if you or anyone else ever has to alter the code, it will make it much 
easier to understand. From here on out, it is up to you to choose how you want to group your code.  
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4.11 Search Control 
In order to make the search more efficient; you need to add rules that prefer operators that have the best 
chance of leading to one of the desired states. There are few general heuristics that you can use in the 
water jug. The total number of possible states is only 16; however, they are highly connected, and it is 
difficult to avoid revisiting the same state over and over again unless a list of visited states is maintained. 
Maintaining such a list is possible in Soar, but it is not easy – it would require creating a copy of every 
state after an operator has applied and then comparing a new state to the states in the list. In the section 
on planning you will learn about an alternative approach that is a more natural way for Soar programs to 
avoid repeated visits to the same state. For now, we will concentrate on avoiding undoing the last 
operator that was applied, such as emptying a jug right after it has been filled, filling a jug after it has been 
emptied, or pouring water from one jug into the other right after the opposite pouring has been done. 
These heuristics will be even more effective when for the Missionaries and Cannibals problem and 
planning, but for now they allow us to look at how to maintain a history of the last operator application.  
 
In order to avoid undoing the last operator, the program must remember the operator in the state after it 
applies. In Soar, this memory is not automatic. The selected operator is retracted as soon as it applies. In 
order to have a record of the previous operator; you must add some rules that deliberately record the 
operator each time one is applied. The rules will be part of the operator application because they will test 
the operator in order to record it, which in turn will make the record persistent (which is what you want).  
 
Recording an operator has two parts. The first is creating a structure on the state that is the memory of 
the most recent operator. The second is removing any record of an older operator. Given the 
representation of the water jug operators in working memory, you will have to write three rules to record 
the last operator – one for each operator. If all of the operators had exactly the same augmentations, then 
it would be possible to do this with one rule, and we could change the operator representations to make 
this easy, but for now, we will go with the existing operator representations. The action of these rules 
should be to create an augmentation of the state that includes the augmentation of the selected operator 
(name, fill-jug, empty-jug as appropriate). It should not create a link to the original operator because all of 
the substructure of that operator will be removed as soon as the rule that created operator retracts. Try to 
write English versions of these rules. We will show only rules for the pour operator.  
 
water-jug*apply*operator*record*last-operator*pour 
If the task is water-jug and the pour operator is selected, then create an 
augmentation of the state (last-operator) with the name of the operator and a 
copy of the augmentations augmentation.  
 
This can then be converted into a Soar rule: 
 

 sp {water-jug*apply*operator*record*last-operator*pour 
    (state <s> ^name water-jug 
               ^operator <o>) 
    (<o> ^name pour 
         ^fill-jug <fj> 
         ^empty-jug <ej>) 
    --> 
    (<s> ^last-operator <last-op>) 
    (<last-op> ^name pour 
               ^fill-jug <fj> 
               ^empty-jug <ej>)} 

 
The rule to remove old records has to test only if the name of the current operator and the jug 
augmentation are different because it is not possible to apply an operator twice in a row. 
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water-jug*apply*operator*remove*old*last-operator*pour 
If the task is water-jug and a pour operator is selected and last-operator 
does not have the same name and fill-jug, then remove the last-operator. 
 

 sp {water-jug*apply*operator*remove*last-operator*pour 
    (state <s> ^name water-jug 
                                ^operator <o> 
               ^last-operator <last-op>) 
    (<o> ^name pour 
         ^fill-jug <fj> 
         ^empty-jug <ej>) 
   -(<last-op> ^name pour  
               ^fill-jug <fj> 
               ^empty-jug <ej>) 
    --> 
    (<s> ^last-operator <last-op> -)} 

 
Once you add these rules, add rules that avoid applying an operator that undoes the previous operator 
(you should write these yourself). 
water-jug*select*operator*avoid*inverse*fill 
If the task is water-jug and the last operator is empty then avoid a fill. 
 
water-jug*select*operator*avoid*inverse*empty 
If the task is water-jug and the last operator is fill then avoid an empty. 
 
water-jug*select*operator*avoid*inverse*pour 
If the task is water-jug and the last operator is pour from one jug then 
avoid a pour the opposite way. 
 

 sp {water-jug*select*operator*avoid*inverse*fill 
    (state <s> ^name water-jug 
               ^operator <o> +  
               ^last-operator <lo>) 
    (<o> ^name fill ^fill-jug <i>) 
    (<lo> ^name empty ^empty-jug <i>) 
    -->  
    (<s> ^operator <o> <)} 
 
 sp {water-jug*select*operator*avoid*inverse*empty 
    (state <s> ^name water-jug 
               ^operator <o> +  
               ^last-operator <lo>) 
    (<o> ^name empty ^empty-jug <i>) 
    (<lo> ^name fill ^fill-jug <i>) 
    -->  
    (<s> ^operator <o> <)} 
 
 sp {water-jug*select*avoid*inverse*pour 
    (state <s> ^name water-jug 
               ^operator <o> +  
               ^last-operator <lo>) 
    (<o> ^name pour ^fill-jug <j>) 
    (<lo> ^name pour ^empty-jug <j>) 
    -->  
    (<s> ^operator <o> <)} 
 

Adding these rules, should shorten your search on average. My ten-run average went from 168 to 108. 
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4.12 Water Jug Problem Space 
Given a specific problem space, many different problems can be defined by selecting different initial and 
desired states. For example, you could define the problem of starting with both jugs full and getting four 
gallons of water into the five-gallon jug. Should that problem be easier or harder than the original 
problem?  The difficulty can also vary with the definition of the problem space. The original problem 
becomes easy if we expand the problem space to include a jug that holds four gallons of water (changing 
the objects in the space), and it becomes impossible if there is no pour operator. 
 
One way to understand the Water Jug problems better is to visualize the complete problem space. The 
diagram below shows all the states and operator transitions in the Water Jug problem space. Each state 
contains the contents of the five-gallon and three-gallon jugs in order. The operator transitions are color 
coded. The goal states are shared in light green. In this problem, there are two distinct paths to the 
solution, one path much shorter (4 steps) than the other path (10 steps). The difficulty of the problem 
stems from the fact that there are usually four operators that can apply to each state but only one leads 
toward the solution. The remaining operators lead back toward one of four states, all of which are at least 
three steps from the solution. Therefore it is unlikely that this problem will be solved quickly via a random 
search. 

 
Although we can layout the complete problem space and the connections between states, the problem 
solver usually doesn’t have that information available for examination – it only has the information 
available in a single state. For the purposes of this tutorial, we assumed that the agent starts with only an 
internal description of the initial state, the set of legal operators, and the desired state so that the problem 
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will be solved by starting from the initial state and then searching for a desired state by selecting and 
applying operators. At any time the agent is at only one state and is faced with selecting an operator to 
apply to the state to move to a new state. Often AI planners reformulate problems so that they are 
searching through a space of plans (and not states of the problem). In those cases, the states are partial 
plans and the operators modify the plan by adding, removing, or reordering plan steps. For the problems 
we consider in this tutorial, the problem solver will always be in the space of states of the problem (task 
states) and not in a planning space (although you could use Soar to work in the planning space, but it 
would complicate the description of Soar). 
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4.13 Summary of Problem Formulation in Soar 
Below is a summary of the main steps in formulating and representing a problem in Soar. 
1. The state representation. These are the attributes and values that are used to describe the different 

states of the problem. For this problem the state must represent how much water is in each jug. 
2. The initial state creation. An operator will generate the state where the problem solving starts. In this 

problem, the initial state has both jugs empty. 
3. State elaboration rules. These rules elaborate the state with additional structures that aren’t 

fundamental to the state (they aren’t created and deleted by operator application rules), but are 
derived from the core aspect of the state. Thus, they are entailments that are useful abstractions, 
often making it possible to create simpler rules for proposing and comparing operators.  

4. The operator proposal rules. These are the rules that propose the legal state transformations that can 
be made toward solving the problem. For this problem there are three classes of operators: 
a) Pour water from the well into a jug. 
b) Pour water from a jug to a jug.  
c) Pour water from a jug to the well. 

5. The operator application rules. These are the rules that transform the state when an operator is 
selected. 

6. The operator and state monitoring rules. These are optional rules that print out the operator as it 
applies and prints out the current state. 

7. The desired state recognition rule. This is a rule that notices when one of the desired states is 
achieved. In this problem, the desired states have one gallon of water in the three-gallon jug. 

8. The search control rules. These are optional rules that prefer the selection of one operator over 
another. Their purpose is to avoid useless operators and/or direct the search toward the desired 
state. Theoretically you could encode enough rules so that the correct operator is always selected for 
each state. However, you would have had to already solved the problem yourself to figure out those 
rules. Our goal is to have the program solve the problem, using only knowledge available from the 
problem statement and possibly some general knowledge about problem solving. Therefore, search 
control will be restricted to general problem solving heuristics. 

 


