
Part	VIII:	Episodic	Memory	
Episodic	memory	(EpMem)	in	Soar	is	a	mechanism	that	automatically	captures,	
stores,	and	temporally	indexes	agent	state	and	supports	a	content-addressable	
agent	interface	to	retrieve	this	autobiographical	prior	experience.	This	information	
supplements	what	is	contained	in	short-term	working	memory	and	other	long-term	
memories,	such	as	rules	in	procedural	memory.	
	

1.	A	Short	Demonstration	
Before	we	delve	into	how	an	agent	can	use	episodic	memory,	let’s	see	an	example	of	
capturing	an	episode	and	viewing	the	contents	of	the	memory.	
	
First,	open	the	Soar	Debugger.	Then,	execute	the	following	command	(this	can	be	
loaded	from	a	source	file	just	as	any	other	Soar	command):	
	

epmem --set trigger dc
epmem --set learning on
watch --epmem

Now,	click	the	“Step”	button	twice.	If	we	inspect	the	trace,	and	ignore	the	state	no-
change	impasses,	we	see	the	following	message:	
	

NEW EPISODE: 1

This	is	an	indication	that	a	new	episode,	with	id	1,	has	been	automatically	stored	by	
the	architecture	within	the	episodic	store.	
	
We	can	view	the	contents	of	episodic	memory	using	the	epmem	--print	command,	
which	expects	an	episode	id	as	an	argument.	For	example,	execute	the	following	
command:	
	

epmem --print 1

Which	will	output	the	following	result:	
	

(<id0> ^io <id1> ^reward-link <id2> ^superstate nil ^type state)
(<id1> ^input-link <id4> ^output-link <id3>)

	
To	pictorially	view	the	contents	of	semantic	memory,	we	can	use	the	visualize	
command	to	render	the	contents	of	semantic	memory	to	an	image.	For	example,	
execute	the	following	command:	
	

visualize epmem

If	you	have	graphviz	and	DOT	installed	(see	http://graphviz.org	for	more	detail),	it	
should	launch	your	system	viewer	to	show	a	diagram	similar	to:	

	
	

From	both	the	trace	output	as	well	as	the	Graphviz	rendering	we	can	see	that	
episodic	memory	has	stored	most	of	the	top-state	of	the	agent’s	working	memory	at	
a	particular	moment	in	time.	In	the	following	sections	we’ll	examine	in	more	detail	
how	to	control	automatic	storage	and	how	agents	can	retrieve	episodic	knowledge.	

2.	Episodic	Storage	
As	we	saw	in	Part	1	of	this	tutorial,	episodic	storage	is	automatic	and	captures	the	
top	state	of	the	agent’s	working	memory.	To	enable	storage,	episodic	memory	must	
be	enabled.	By	default,	all	learning	mechanisms	in	Soar	are	disabled.	To	enable	
episodic	memory,	issue	the	following	command:	
	

epmem --set learning on

There	are	a	few	architectural	parameters	that	are	important	to	control	episodic	
storage.	The	first	is	the	event	that	triggers	storage.	By	default,	episodic	memory	
stores	new	episodes	whenever	a	WME	is	added	to	working	memory	that	has	the	
output-link	as	its	identifier.	However,	Soar	also	supports	storing	episodes	each	
decision	cycle	(“dc”),	which	is	enabled	using	the	following	command	(which	we	used	
in	Part	1	of	this	tutorial):	
	

epmem --set trigger dc

The	next	important	parameter	is	the	phase	during	which	episodic	memory	stores	
episodes	(and	processes	retrievals,	as	discussed	later).	By	default,	this	processing	
occurs	at	the	end	of	the	output	phase.	However,	Soar	also	supports	this	processing	
occurring	at	the	end	of	the	decision	phase,	which	is	enabled	using	the	following	
command:	
	

epmem --set phase selection

Finally,	it	is	sometimes	the	case	that	certain	portions	of	the	agent’s	working	memory	
should	be	excluded	from	automatic	storage.	Episodic	memory	supports	specifying	a	
set	of	excluded	attributes:	if	automatic	storage	encounters	an	excluded	attribute	
during	a	breadth-first	walk	of	working	memory,	it	does	not	store	that	WME,	nor	any	

substructure	if	it	was	the	case	that	the	value	of	the	WME	was	an	identifier.	To	view	
the	current	excluded	set,	issue	the	following	command:	
	

epmem --get exclusions
	
To	change	the	excluded	set,	issue	the	following	command:	
	

epmem --set exclusions <attribute>

This	command	toggles	the	state	of	an	attribute	within	the	set:	thus	if	this	command	
is	executed	with	an	attribute	that	is	already	in	the	excluded	set,	it	is	removed	from	
the	set,	otherwise	it	is	added.	By	default,	“epmem”	and	“smem”	are	in	the	excluded	
set,	which	is	why	we	do	not	see	these	architectural	links	in	the	trace/visualization	in	
Part	1	of	this	tutorial.	
	
In	Part	1,	we	also	enabled	trace	output	that	is	useful	for	understanding	episodic	
memory	via	the	following	command:	
	

watch --epmem

This	trace	option	indicates	when	new	episodes	are	recorded,	as	well	as	debugging	
information	for	retrievals,	as	discussed	later.	

3.	Agent	Interaction	
Agents	interact	with	episodic	memory	via	special	structures	in	working	memory.	
Soar	automatically	creates	an	epmem	link	on	each	state,	and	each	epmem	link	has	
specialized	substructure:	a	command	link	for	agent-initiated	actions	and	a	result	link	
for	feedback	from	episodic	memory.	For	instance,	issue	the	following	command:	
	

print --depth 10 <s>

If	you	read	the	output	carefully	you	will	notice	a	WME	that	can	be	generally	
represented	as	(<state>	^epmem	<epmem>)	and	three	additional	WMEs	that	can	be	
represented	as	(<epmem>	^command	<cmd>),	(<epmem>	^result	<r>),	and	
(<epmem>	^present-id	<episode	id>)	
	
As	described	in	the	following	sections,	the	agent,	via	rules,	populates	and	maintains	
the	command	link	and	the	architecture	populates	and	cleans	up	the	result	link.	As	
episodes	are	stored,	the	present-id	augmentation	updates	to	indicate	the	current	
episode	id,	the	value	of	which	is	a	positive	integer.	
	
For	the	agent	to	interact	with	episodic	memory,	this	mechanism	must	be	enabled.	As	
mentioned	in	Part	2,	by	default,	all	learning	mechanisms	in	Soar	are	disabled	and	so	
you	must	enable	episodic	memory	via	the	command	in	Part	2.	
	

By	default,	all	commands	are	processed	during	the	agent’s	output	phase	(this	can	be	
changed	using	the	phase	parameter,	as	described	in	Part	2	of	this	tutorial)	and	only	
one	command	can	be	issued	per	state	per	decision.	

4.	Cue-Based	Retrieval	
The	primary	method	that	an	agent	can	retrieve	knowledge	from	episodic	memory	is	
called	a	cue-based	retrieval:	the	agent	requests	from	episodic	memory	an	episode	
that	most	closely	matches	a	cue	of	working-memory	elements.	The	syntax	of	the	
command	is	(<cmd>	^query	<cue>),	where	<cue>	forms	the	root	of	the	cue.	
Conceptually,	episodic	memory	compares	the	cue	to	all	episodes	in	the	store,	
scoring	each	one,	and	returns	the	most	recent	episode	with	the	maximal	score.	
	
Episodes	are	scored	based	upon	the	leaf	WMEs	in	the	cue.	A	leaf	WME	has	either	a	
value	that	is	a	constant,	a	long-term	identifier,	or	a	short-term	identifier	with	no	
augmentations.	A	leaf	WME	is	satisfied,	with	respect	to	a	particular	episode,	if	there	
exists	a	path,	or	sequence	of	WMEs,	from	the	episode	root	to	that	leaf	WME,	where	
the	attributes	of	all	intermediate	WMEs	exactly	match	those	in	the	cue,	and	short-
term	identifiers	in	the	cue	variablize	to	consistently	match	identifiers	in	the	episode.	
This	is	similar	to	how	variables	in	the	conditions	of	rules	bind	to	specific	identifiers	
in	working	memory.	However,	as	discussed	below,	episode	scoring	is	disjunctive	
with	respect	to	leaf	WMEs	(i.e.	each	leaf	WME	is	considered	independently),	
whereas	rule	matching	is	conjunctive	with	respect	to	production	conditions	(i.e.	a	
rule	matches	only	if	all	conditions	are	satisfied).	By	default,	the	score	of	an	episode	
is	simply	the	number	of	satisfied	leaf	WMEs.	
	
Let	us	consider	an	example	cue,	composed	of	the	following	WMEs,	where	N1	is	the	
value	of	the	query	command,	as	described	above:	
	

(N1 ^feature value
 ^id N2)
(N2 ^sub-feature value2
 ^sub-id N3)

Or,	visually:	
	

	
This	cue	has	three	leaf	WMEs:	(N1	^feature	value),	(N2	^sub-feature	value2),	and	
(N2	^id	N3).	Now	consider	the	following	episode:	
	

	
The	first	leaf	WME	of	the	cue,	(N1	^feature	value),	is	not	satisfied	by	this	episode,	as	
there	is	no	(E1	^feature	value)	WME:	(E1	^feature2	value)	has	a	different	attribute	
and	(E1	^feature	value3)	has	a	different	value.	Both	other	leaf	WMEs,	however,	are	
satisfied.	(N2	^sub-feature	value2)	is	satisfied	by	variablizing	E1	as	N1	and	E2	as	
N2:	(E1	^id	E2)	and	(E2	^sub-feature	value2).	(N2	^id	N3)	is	satisfied	by	
variablizing	E1	as	N1,	E3	as	N2,	and	E5	as	N3:	(E1	^id	E3),	(E3	^sub-id	E5).	Note	that	
the	substructure	of	E4	in	the	episode	matches	that	of	N2	in	the	cue,	but	there	is	no	
WME	(E1	^id	E4),	and	so	E4	is	not	considered.	Thus,	this	episode,	with	respect	to	
the	cue,	has	a	score	of	2.	
	
Note,	however,	that	it	is	not	possible	to	unify	the	cue	with	the	episode:	there	is	no	
single	identifier	in	the	episode	that,	when	bound	as	N2	in	the	cue,	satisfies	both	(N2	
^sub-feature	value2)	and	(N2	^sub-id	N3).	If	an	episode	gets	a	perfect	score,	such	
that	all	leaf	WMEs	are	satisfied,	episodic	memory	attempts	to	graph	match	the	cue	
with	the	episode	(i.e.	determine	if	there	exists	an	isomorphism	between	the	cue	and	
the	episode).	So	in	response	to	a	cue-based	retrieval	command,	episodic	memory	
will	return	the	most	recent	graph-matched	episode,	or,	if	one	does	not	exist,	the	
most	recent	episode	with	the	maximal	episode	score.	For	clarity,	episode	recency	is	
directly	proportional	to	the	episode	id,	where	larger	episode	id’s	are	more	recent.	
	
Let’s	see	how	the	example	above	works	in	Soar.	Run	the	Soar	Debugger	and	source	
the	following	rules	(these	rules	are	already	part	of	the	epmem-tutorial.soar	file	in	
the	Agents	directory):	
	
	

sp {propose*init
 (state <s> ^superstate nil
 -^name)
-->
 (<s> ^operator <op> + =)
 (<op> ^name init)}

sp {apply*init
 (state <s> ^operator <op>)
 (<op> ^name init)
-->
 (<s> ^name epmem
 ^feature2 value
 ^feature value3
 ^id <e2>

 ^id <e3>
 ^other-id <e4>)
 (<e2> ^sub-feature value2)
 (<e3> ^sub-id <e5>)
 (<e4> ^sub-id <e6>
 ^sub-feature value2)}

sp {epmem*propose*cbr
 (state <s> ^name epmem
 -^epmem.command.<cmd>)
-->
 (<s> ^operator <op> + =)
 (<op> ^name cbr)}

sp {epmem*apply*cbr-clean
 (state <s> ^operator <op>
 ^feature2 <f2>
 ^feature <f>
 ^id <e2>
 ^id <e3>
 ^other-id <e4>)
 (<e2> ^sub-feature value2)
 (<e3> ^sub-id)
 (<op> ^name cbr)
-->
 (<s> ^feature2 <f2> -
 ^feature <f> -
 ^id <e2> -
 ^id <e3> -
 ^other-id <e4> -)}

sp {epmem*apply*cbr-query
 (state <s> ^operator <op>
 ^epmem.command <cmd>)
 (<op> ^name cbr)
-->
 (<cmd> ^query <n1>)
 (<n1> ^feature value
 ^id <n2>)
 (<n2> ^sub-feature value2
 ^sub-id <n3>)}

	
Now	execute	the	following	commands:	
	

epmem --set trigger dc
epmem --set learning on
watch --epmem

Then	click	the	“Step”	button	and	then	the	“Run	1	-p”	button.	Now	print	out	the	top	
state	of	working	memory	(print	--depth	10	s1).	Notice	that	the	top	state	contains	the	
structures	of	the	sample	episode	above	(such	as	^feature	value),	as	well	as	other	
WMEs	(such	as	^superstate	nil).	
	
Now	click	the	“Step”	button.	You	should	notice	in	the	trace	that	episode	#1	was	
stored.	Click	the	“Run	1	-p”	button	to	apply	the	cbr	operator	and	print	the	top	state	

of	working	memory	(print	--depth	10	s1).	Notice	that	the	structures	of	the	sample	
episode	have	been	removed	and	that	the	sample	cue	has	been	added	to	the	
command	structure	of	the	epmem	link.	
	
Now	click	the	“Run	1	-p”	button.	Episodic	memory	stored	another	episode	(#2)	and	
then	processed	the	cue-based	query.	The	trace	contains	the	following	text:	
	

CONSIDERING EPISODE (time, cardinality, score): (1, 2, 2.000000)
NEW KING (perfect, graph-match): (false, false)

The	first	line	indicates	that	episodic	memory	compared	the	cue	to	episode	#1	(i.e.	
time=1),	found	that	the	cardinality	of	the	set	of	satisfied	leaf	WMEs	was	2,	and	thus	
the	episode	was	scored	as	2.	Since	this	was	the	first	considered	episode,	it	is	
indicated	as	“king”	[of	the	mountain].	However,	since	the	episode	did	not	have	a	
perfect	score	(2	out	of	3),	graph-match	was	not	attempted	and	was	thus	not	
successful.	Since	episode	#2	did	not	have	any	features	in	common	with	the	cue	
(application	of	the	cbr	operator	removed	these	structures),	episodic	memory	did	not	
consider	it	as	a	performance	optimization.	
	
Now	print	the	full	contents	of	the	episodic	memory	link	(print	--depth	10	e1):	
	

(E1 ^command C1 ^present-id 3 ^result R2)
 (C1 ^query N1)
 (N1 ^feature value ^id N2)
 (N2 ^sub-feature value2 ^sub-id N3)
 (R2 ^cue-size 3 ^graph-match 0 ^match-cardinality 2
 ^match-score 2.^memory-id 1
 ^normalized-match-score 0.6666666666666666 ^present-id 3
 ^retrieved R4 ^success N1)
 (R4 ^feature value3 ^feature2 value
 ^id I5 ^id I6 ^io I4 ^name epmem
 ^operator* O5 ^other-id O4 ^reward-link R5
 ^superstate nil ^type state)
 (I5 ^sub-feature value2)
 (I6 ^sub-id S3)
 (I4 ^input-link I7 ^output-link O6)
 (O5 ^name cbr)
 (O4 ^sub-feature value2 ^sub-id S4)

	
The	result	structure	indicates	that	the	retrieval	was	successful,	has	a	link	to	the	full	
episode	contents	(rooted	at	R4),	and	has	meta-data	about	the	cue-matching	process,	
with	respect	to	the	retrieved	episode.	Details	of	these	augmentations	are	in	the	
Episodic	Memory	chapter	of	the	Soar	Manual.	Note	that	a	WME	with	an	“operator*”	
attribute	(such	as:	R4	^operator*	R5)	in	a	retrieved	episode	represents	an	
acceptable	preference	WME	in	the	original	episode.	
	
There	are	optional	modifiers	to	cue-based	queries,	including	the	ability	to	prohibit	
specific	episodes	from	being	retrieved	and	indicating	features	that	are	not	desirable	
in	the	retrieved	episode.	More	information	on	this	functionality	is	in	the	Episodic	
Memory	chapter	of	the	Soar	Manual.	

5.	Temporal	Progression	
Another	way	the	agent	can	gain	access	to	episodes	is	by	retrieving	the	episode	that	
came	temporally	before/after	the	last	episode	that	was	retrieved.	The	syntax	of	
these	commands,	respectively,	are	(<cmd>	^previous	<id>)	and	(<cmd>	^next	<id>),	
where	<id>	is	any	identifier.	
	
As	an	example,	add	the	following	rules	to	our	agent	from	Part	4	of	this	tutorial	
(these	rules	are	already	part	of	the	epmem-tutorial.soar	file	in	the	Agents	directory):	
	

sp {epmem*propose*next
 (state <s> ^name epmem
 ^epmem.command.query)
-->
 (<s> ^operator <op> + =)
 (<op> ^name next)}

sp {epmem*apply*next
 (state <s> ^operator <op>
 ^epmem.command <cmd>)
 (<op> ^name next)
 (<cmd> ^query <q>)
-->
 (<cmd> ^query <q> -
 ^next <next>)}

	
These	rules	will	retrieve	the	episode	that	temporally	proceeds	the	episode	retrieved	
in	the	previous	part	of	this	tutorial.	
	
Click	the	“Step”	button,	then	the	“Run	1	-p”	button.	Now	print	the	episodic	memory	
link	(print	--depth	10	e1).	Notice	that	the	query	command	has	been	replaced	with	a	
next	command.	Note	that	the	results	of	the	previous	commands	are	still	in	working	
memory:	these	will	be	automatically	cleaned	by	episodic	memory	when	the	next	
command	is	processed.		
	
Now	click	the	“Run	1	-p”	button	and	print	the	episodic	memory	link	(print	--depth	10	
e1):	
	

(E1 ^command C1 ^present-id 4 ^result R2)
 (C1 ^next N4)
 (R2 ^memory-id 2 ^present-id 4 ^retrieved R6 ^success N4)
 (R6 ^io I8 ^name epmem ^operator* O7 ^reward-link R
 ^superstate nil ^type state)
 (I8 ^input-link I9 ^output-link O8)
 (O7 ^name next)

The	result	structure	has	been	cleaned	of	old	structures	and	now	shows	that	the	
command	was	successful	and	episode	#2	was	retrieved	(with	all	of	its	original	
contents).	
	

You	now	have	some	basic	understanding	of	using	episodic	memory.	Read	the	
Episodic	Memory	chapter	of	the	Soar	manual	for	additional	detail	and	functionality.	

