
Part	VII:	Semantic	Memory	
Semantic	memory	(SMem)	in	Soar	is	a	mechanism	that	allows	agents	to	deliberately	
store	and	retrieve	objects	that	are	persistent.	This	information	supplements	what	is	
contained	in	short-term	working	memory	and	other	long-term	memories,	such	as	
rules	in	procedural	memory.	
	

1.	The	Semantic	Store	
Before	we	delve	into	how	an	agent	can	use	semantic	memory,	let’s	see	an	example	of	
preloading	knowledge	and	viewing	the	contents	of	the	memory.	
	
First,	open	the	Soar	Debugger.	Then,	execute	the	following	command	(this	can	be	
loaded	from	a	source	file	just	as	any	other	Soar	command):	
	

smem --add {
 (<a> ^name alice ^friend)
 (^name bob ^friend <a>)
 (<c> ^name charley)
}

As	we	shall	see	in	a	moment,	executing	this	command	adds	three	objects	to	semantic	
memory.	In	general,	the	smem	--add	command	is	useful	to	preload	the	contents	of	
large	knowledge	bases	in	Soar.	
	
We	can	view	the	contents	of	semantic	memory	using	the	following	command:	
	

print @

Which	will	output	the	following	result:	
	

(@1 ^friend @2 ^name alice [+0.000])
(@2 ^friend @1 ^name bob [+0.000])
(@3 ^name charley [+0.000])

Note	first	that	the	variables	from	the	smem	--add	command	have	been	instantiated	
as	specific	identifiers	(<a>	as	@1,		as	@2,	and	<c>	as	@3).	All	identifiers	in	
semantic	memory	are	persistent,	and	thus	we	call	them	long-term	identifiers	(or	
LTIs),	in	contrast	to	all	other	identifiers,	which	are	short-term.	When	printed,	long-
term	identifiers	are	prefixed	by	the	@	symbol	and,	when	depicted,	are	shown	using	
a	double	circle.	The	number	in	square	brackets	is	the	bias	value	of	the	object,	used	to	
break	ties	during	retrievals,	a	topic	to	which	we	shall	return	later.	Finally,	unlike	
working	memory	and	rules,	the	knowledge	in	semantic	memory	need	not	be	
connected,	nor	linked	directly	or	indirectly,	to	a	state.	
	

To	pictorially	view	the	contents	of	semantic	memory,	we	can	use	the	visualize	
command	to	render	the	contents	of	semantic	memory	to	an	image.	For	example,	
execute	the	following	command:	
	

visualize smem

If	you	have	graphviz	and	DOT	installed	(see	http://graphviz.org	for	more	detail),	it	
should	launch	your	system	viewer	to	show	a	diagram	similar	to:	
	

	
Now	that	we	have	seen	the	contents	of	semantic	memory,	you	can	confirm	that	none	
of	this	knowledge	is	present	in	any	of	the	agent’s	other	memories.	For	instance,	
execute	the	following	commands	to	print	the	contents	of	working	and	procedural	
memories:	
	

print --depth 100 <s>
print

You	notice	that	the	contents	of	the	semantic	store	can	be	completely	independent	of	
the	other	memories,	though,	as	discussed	later,	an	agent	can	access	and	modify	the	
store	over	time.	
	
We	are	now	done	with	this	example	and	wish	to	clear	the	semantic	store.		To	do	this	
we	issue	a	special	command:	
	

smem --clear

The	agent	is	now	reinitialized,	as	you	can	verify	by	printing	the	contents	of	working	
memory,	procedural	memory,	and	now	semantic	memory.	

2.	Agent	Interaction	
Agents	interact	with	semantic	memory	via	special	structures	in	working	memory.	
Soar	automatically	creates	an	smem	link	on	each	state,	and	each	smem	link	has	
specialized	substructure:	a	command	link	for	agent-initiated	actions	and	a	result	link	
for	feedback	from	semantic	memory.	For	instance,	issue	the	following	command:	
	

print --depth 10 <s>

If	you	read	the	output	carefully	you	will	notice	a	WME	that	can	be	generally	
represented	as	(<state>	^smem	<smem>)	and	two	additional	WMEs	that	can	be	
represented	as	(<smem>	^command	<cmd>)	and	(<smem>	^result	<r>).	
	
As	described	in	the	following	sections,	the	agent,	via	rules,	populates	and	maintains	
the	command	link	and	the	architecture	populates	and	cleans	up	the	result	link.	
	
For	the	agent	to	interact	with	semantic	memory,	this	mechanism	must	be	enabled.	
By	default,	all	learning	mechanisms	in	Soar	are	disabled.	To	enable	semantic	
memory,	issue	the	following	command:	
	

smem --enable

3.	Agent	Storage	and	Modification	
An	agent	stores	an	object	to	semantic	memory	by	issuing	a	store	command.	The	
syntax	of	a	store	command	is	(<cmd>	^store	<id>)	where	<cmd>	is	the	command	
link	of	a	state	and	<id>	is	an	identifier.		
	
An	agent	can	issue	multiple	store	commands	simultaneously,	and	the	commands	are	
processed	at	the	end	of	the	phase	in	which	they	are	issued.	A	store	command	is	
guaranteed	to	succeed	and	the	response	from	the	architecture	will	be	a	success	
WME:	(<r>	^success	<id>),	where	<r>	is	the	result	link	of	the	state	on	which	the	
store	command	was	issued	and	<id>	was	the	value	of	the	store	command.	
	
A	store	command	stores	the	identifier	that	is	the	result	of	the	command,	as	well	as	
any	augmentations	of	that	identifier.	The	command	is	not	recursive.	If	the	identifier	
to	be	stored	was	not	long-term,	it	is	changed	in	place	to	a	long-term	identifier.	If	it	
was	already	in	semantic	memory,	the	augmentations	of	the	long-term	identifier	in	
semantic	memory	are	overridden.	
	
Let’s	see	an	example.	Source	the	following	rules	into	the	Soar	Debugger	(they	are	
available	in	the	smem-tutorial.soar	file	within	the	Agents	directory).	
	

sp {propose*init
 (state <s> ^superstate nil
 -^name)
 -->
 (<s> ^operator <op> +)
 (<op> ^name init)}

 sp {apply*init
 (state <s> ^operator.name init
 ^smem.command <cmd>)
 -->
 (<s> ^name friends)
 (<cmd> ^store <a> <c>)
 (<a> ^name alice ^friend)
 (^name bob ^friend <a>)
 (<c> ^name charley)}

sp {propose*mod
 (state <s> ^name friends
 ^smem.command <cmd>)
 (<cmd> ^store <a> <c>)
 (<a> ^name alice)
 (^name bob)
 (<c> ^name charley)

-->
 (<s> ^operator <op> +)
 (<op> ^name mod)}

 sp {apply*mod
 (state <s> ^operator.name mod
 ^smem.command <cmd>)
 (<cmd> ^store <a> <c>)
 (<a> ^name alice)
 (^name bob)
 (<c> ^name charley)
 -->
 (<a> ^name alice -)
 (<a> ^name anna
 ^friend <c>)
 (<cmd> ^store -)
 (<cmd> ^store <c> -)}

Now	click	the	“Step”	button	to	run	till	the	decision	phase	and	notice	that	the	init	
operator	is	selected.	Now,	click	the	“Watch	5”	button	and	then	the	“Run	1	-p”	button	
to	watch	as	the	operator	is	applied.	Below	is	part	of	the	trace	that	should	be	
produced.	If	you	do	not	see	this	part	of	this	trace	in	your	run,	be	sure	that	you	
enabled	semantic	memory	(see	section	above).	
	

--- apply phase ---
--- Firing Productions (PE) For State At Depth 1 ---
Firing apply*init
+ (C3 ^name charley + :O) (apply*init)
+ (B1 ^friend A1 + :O) (apply*init)
+ (B1 ^name bob + :O) (apply*init)
+ (A1 ^friend B1 + :O) (apply*init)
+ (A1 ^name alice + :O) (apply*init)
+ (C2 ^store C3 + :O) (apply*init)
+ (C2 ^store B1 + :O) (apply*init)
+ (C2 ^store A1 + :O) (apply*init)
+ (S1 ^name friends + :O) (apply*init)
 --- Change Working Memory (PE) ---
=>WM: (25: C3 ^name charley)
=>WM: (24: B1 ^friend A1)
=>WM: (23: B1 ^name bob)
=>WM: (22: A1 ^friend B1)
=>WM: (21: A1 ^name alice)
=>WM: (20: C2 ^store A1)
=>WM: (19: C2 ^store B1)
=>WM: (18: C2 ^store C3)
=>WM: (17: S1 ^name friends)

Notice	that	the	apply*init	rule	fired	and	added	3	store	commands	to	working	
memory,	where	the	identifiers	to	be	stored	are,	initially,	not	long-term,	and	whose	
augmentations	mirror	the	contents	of	the	smem	--add	command	in	Part	1	of	this	
tutorial.	Then,	at	the	end	of	the	elaboration	phase,	semantic	memory	processed	the	
command,	converted	the	identifiers	to	long-term,	and	added	status	for	each	
command.	
	
Now,	try	printing	the	contents	of	semantic	memory	using	the	print	@	command.	You	
will	see	that	semantic	memory	now	has	the	same	contents	as	after	using	the	smem	--
add	command	in	Part	1.	
	
Application	of	the	next	operator	modifies	the	contents	of	semantic	memory	by	
overriding	the	contents	of	an	existing	long-term	identifier	(@1).	Click	the	“Step”	
button	to	select	the	next	operator	(mod)	and	then	click	the	“Run	1	-p"	button	to	
apply	the	operator:	
	

Firing apply*mod
- (A1 ^name alice + :O) (apply*init)
- (C2 ^store B1 + :O) (apply*init)
- (C2 ^store C3 + :O) (apply*init)
+ (A1 ^friend C3 + :O) (apply*mod)
+ (A1 ^name anna + :O) (apply*mod)
 --- Change Working Memory (PE) ---
=>WM: (33: A1 ^name anna)
=>WM: (32: A1 ^friend C3)
<=WM: (21: A1 ^name alice)
<=WM: (18: C2 ^store C3)
<=WM: (19: C2 ^store B1)

You	will	notice	in	the	trace	that	the	store	commands	for	@2	and	@3	are	removed	by	
the	application	rule,	and	that	augmentations	of	@1	are	removed	and	added.	Then,	at	
the	end	of	the	elaboration	phase,	semantic	memory	cleans	up	the	status	information	
for	the	old	store	commands.	
	
Now,	print	the	contents	of	semantic	memory	using	the	print	@	command:	

(@1 ^friend @2 @3 ^name anna [+1.000])
(@2 ^friend @1 ^name bob [+1.000])
(@3 ^name charley [+1.000])

Notice	that	the	augmentations	of	@1	have	indeed	changed	in	semantic	memory	to	
reflect	the	new	store	command,	while	@2	and	@3	remain	unchanged.	

4.	Non-Cue-Based	Retrieval	
The	first	way	an	agent	can	retrieve	knowledge	from	semantic	memory	is	called	a	
non-cue-based	retrieval:	the	agent	requests	from	semantic	memory	all	of	the	
augmentations	of	a	known	long-term	identifier.	The	syntax	of	the	command	is	
(<cmd>	^retrieve	<lti>)	where	<lti>	is	a	short-term	identifier	that	is	linked	to	a	long-
term	identifier.		In	other	words,	it	is	a	short-term	identifier	that	was	previously	used	
in	a	store	command	or	recalled	via	a	retrieve	or	query	command.			

	
As	an	example,	add	the	following	three	rules	to	our	agent	from	Part	3	of	this	tutorial	
(these	rules	are	already	part	of	the	smem-tutorial.soar	file	in	the	Agents	directory):	
	

sp {propose*ncb-retrieval
 (state <s> ^name friends
 ^smem.command <cmd>)
 (<cmd> ^store <a>)
 (<a> ^name anna
 ^friend <f>)
-->
 (<s> ^operator <op> + =)
 (<op> ^name ncb-retrieval
 ^friend <f>)}

sp {apply*ncb-retrieval*retrieve
 (state <s> ^operator <op>
 ^smem.command <cmd>)
 (<op> ^name ncb-retrieval
 ^friend <f>)
 (<cmd> ^store <a>)
-->
 (<cmd> ^store <a> -
 ^retrieve <f>)}

sp {apply*ncb-retrieval*clean
 (state <s> ^operator <op>
 ^smem.command <cmd>)
 (<op> ^name ncb-retrieval
 ^friend <f>)
 (<f> ^<attr> <val>)
-->
 (<f> ^<attr> <val> -)}

These	rules	retrieve	all	the	information	about	one	of	@1’s	two	friends	(selected	
randomly)	and	remove	the	friend’s	augmentations	(such	as	name	and/or	friend)	
from	working	memory.	
	
Unlike	store	commands,	all	retrievals	are	processed	during	the	agent’s	output	phase	
and	only	one	retrieval	command	can	be	issued	per	state	per	decision.	
	
Now	click	the	“Step”	button	and	notice	that	one	of	the	two	ncb	operators	is	selected.	
Click	“Run	1	-p"	to	see	the	application	rule	create	a	retrieve	command,	requesting	
information	about	one	of	the	two	friends,	as	well	as	remove	that	friend’s	
augmentations	from	working	memory.	Then	click	the	“Run	1	-p"	button	again	to	
proceed	through	the	output	phase.	Finally,	print	the	full	contents	of	the	smem	link	
(print	--depth	10	L1):	
	

(L1 ^command C2 ^result R3)
(C2 ^depth 3 ^retrieve B1 (@2))
(R3 ^retrieved L2 (@2) ^success B1 (@2))
(L3 ^friend L2 (@2) ^friend L4 (@3) ^name anna)
(L2 ^friend L3 (@1) ^name bob)

(L4 ^name charley)

We	see	that	semantic	memory	has	retrieved	and	added	to	working	memory	the	
name	of	the	friend,	as	well	as	indicated	status	for	this	command	(success).	Your	run	
may	have	retrieved	@3	instead,	as	a	result	of	the	random	selection	process:	

Note	that	had	the	retrieve	command	been	issued	with	an	identifier	that	was	not	
linked	to	a	long-term	identifier,	the	status	would	have	been	failure	and	there	would	
be	no	retrieved	structure.	Note	also	that	retrieved	knowledge	is	limited	to	the	
augmentations	of	the	long-term	identifier:	like	the	store	command,	the	retrieve	
command	is	not	recursive.	

5.	Cue-Based	Retrieval	
The	second	way	an	agent	can	retrieve	knowledge	from	semantic	memory	is	called	a	
cue-based	retrieval:	the	agent	requests	from	semantic	memory	all	of	the	
augmentations	of	an	unknown	long-term	identifier,	which	is	described	by	a	subset	
of	its	augmentations.	The	syntax	of	the	command	is	(<cmd>	^query	<cue>),	where	
the	desired	augmentations	all	have	<cue>	as	their	identifier.	
	
The	augmentations	of	the	cue	form	hard	constraints,	based	upon	the	value	of	each	
WME.	If	the	value	of	the	WME	is	a	constant	(string,	integer,	or	float)	or	long-term	
identifier,	then	any	retrieval	is	required	to	have	exactly	the	attribute/value	pair	
specified.	If	the	value	of	the	WME	is	a	short-term	identifier,	then	any	retrieval	is	
required	to	have	an	augmentation	that	has	the	same	attribute,	but	the	value	is	
unconstrained.	
	
As	an	example,	add	the	following	two	rules	to	our	agent	from	Part	4	of	this	tutorial	
(these	rules	are	already	part	of	the	smem-tutorial.soar	file	in	the	Agents	directory):	
	

sp {propose*cb-retrieval
 (state <s> ^name friends
 ^smem.command <cmd>)
 (<cmd> ^retrieve)
-->
 (<s> ^operator <op> + =)
 (<op> ^name cb-retrieval)}

sp {apply*cb-retrieval
 (state <s> ^operator <op>
 ^smem.command <cmd>)
 (<op> ^name cb-retrieval)
 (<cmd> ^retrieve <lti>)
-->
 (<cmd> ^retrieve <lti> -
 ^query <cue>)
 (<cue> ^name <any-name>
 ^friend <lti>)}

These	rules	retrieve	an	identifier	that	meets	two	constraints:	(1)	it	has	an	
augmentation	where	the	attribute	is	“name”,	but	the	value	can	be	any	symbol,	and	

(2)	it	has	an	augmentation	where	the	attribute	is	“friend”	and	the	value	is	the	long-
term	identifier	retrieved	as	a	result	of	applying	the	operator	in	Part	3.	
	
As	a	reminder,	all	retrievals	are	processed	during	the	agent’s	output	phase	and	only	
one	retrieval	command	can	be	issued	per	state	per	decision.	
	
So	now	click	the	“Step”	button	and	then	click	the	“Run	1	-p"	to	see	the	application	
rule	create	a	query	command,	as	well	as	remove	the	previous	retrieve	command	
from	working	memory.	Then	click	the	“Run	1	-p"	button	again	to	proceed	through	
the	output	phase.	Finally	print	the	contents	of	the	smem	link	(print	--depth	10	L1):	
	

(L1 ^command C2 ^result R3)
 (C2 ^depth 3 ^query C4)
 (C4 ^friend B1 (@2) ^name A2)
 (R3 ^retrieved L5 (@1) ^success C4)
 (L7 ^name charley)
 (L6 ^friend L5 (@1) ^name bob)
 (L5 ^friend L6 (@2) ^friend L7 (@3) ^name anna)

We	see	that	semantic	memory	has	retrieved	and	added	to	working	memory	the	
identifier	@1	and	all	of	its	augmentations,	as	well	as	indicated	status	for	this	
command	(success).	If	in	Part	4	of	this	tutorial	your	agent	retrieved	@3,	you	may	
have	slightly	different	output.	
	
Note	that	had	no	long-term	identifier	in	semantic	memory	satisfied	the	constraints	
of	the	query	command	cue,	the	status	would	have	been	failure	and	there	would	be	
no	retrieved	structure.	Note	also	that	retrieved	knowledge	is	limited	to	the	
augmentations	of	the	long-term	identifier:	like	the	store	command,	retrievals	are	
not	recursive.	We	see	this	in	the	outputs	above	as	one	friend	has	augmentations	(as	
a	result	of	the	retrieve	command	in	Part	4),	whereas	the	other	does	not.	
	
If	multiple	identifiers	had	satisfied	the	constraints	of	the	cue	(such	as	if	the	cue	had	
only	a	WME	with	“name”	as	the	attribute	and	a	short-term	identifier	as	the	value),	
then	the	long-term	identifier	with	the	largest	bias	value	is	returned.	By	default,	the	
bias	value	is	a	monotonically	increasing	integer,	reflecting	the	recency	of	the	last	
storage	or	retrieval	of	an	object.	
	
It	is	also	possible	to	prohibit	one	or	more	long-term	identifiers	from	being	retrieved.	
For	more	information	on	this	any	many	additional	capabilities	of	semantic	memory,	
read	the	Semantic	Memory	chapter	of	the	Soar	Manual.	
	
	

