
A	 Brief	 Note	 Before	 You	 Begin...
First,	 thank	 you	 for	 downloading	 the	 Clarion	 Library,	 version	 6.1.1!	

This	 is	 the	 1st	 release	 since	 April	 of	 2012	 and	 as	 such	 represents	 a	 significant	 enhancement	
over	 6.1.0.7.	 If	 you	 are	 not	 already	 familiar,	 the	 Clarion	 Library	 is	 the	 premier	
implementation	 of	 the	 Clarion	 cognitive	 architecture	 (a	 theory	 by	 Ron	 Sun).	 I	 hope	 you	
enjoy	 all	 of	 the	 new	 features	 and	 capabilities	 that	 have	 been	 added	 in	 this	 release,	 including:	 	

• IMPORTANT:	 The	 name	 of	 the	 DLL	 and	 Serialization	 namespace	 has	 changed	
o CLARIONLibrary	 to	 ClarionLibrary	
o Note:	 definite	 implications	 for	 simulations	 using	 6.1.0.7	

 Make	 sure	 you	 update	 the	 DLL	 reference	 in	 your	 projects!	
• Fully	 implemented	 NACS	 reasoning	 and	 retrieval	

o Now	 interacts	 with	 the	 ACS	 and	 MCS	 modules	
o Added	 InputFilterer	 and	 KnowledgeFilterer	 delegates	

 Can	 be	 specified	 in	 the	 ActionCenteredSubsystem	 to	 do	 custom	
filtering	 to	 &	 from	 the	 NACS	

o Episodic	 memory	 and	 offline	 ACS/NACS	 learning	 currently	 in	 development	
(slated	 for	 the	 next	 release)	

• Core	 improvements	
o Refactored	 event	 timing	 and	 truly	 asynchronous	 event	 invocation	
o Threads	 now	 only	 start	 when	 needed	 (improved	 performance	 &	 memory)	
o Improved	 how	 SensoryInformation	 is	 propagated	 and	 updated	
o Added/moved	 several	 (inner)	 “tuple”	 classes	 to	 Clarion.Framework.Core	
o Added	 various	 core	 “tracking”	 classes	 (e.g.,	 a	 reasoning	 tracker	 for	 the	 NACS)	
o Added	 several	 new	 interfaces	 and	 delegates	

• Added	 new	 concept	 MetaInfoReservations	 	
o Replaces	 things	 like	 TypicalIO	 in	 Drive	
o New	 formatting	 for	 accessing	 this	 meta	 information	 in	 the	

SensoryInformation	 object	
 Note:	 possible	 implications	 for	 simulations	 using	 6.1.0.7	

• Redesigned	 Chunk	 class(es)	
o Chunk	 weight	 and	 strength	 calculation	 methods	 relocated	

 Custom	 delegate	 options	 for	 both	 methods	
o Added	 dimension	 weight	 specifications	

 Implements	 bottom-‐up	 “weight	 matrix”	 concept	 	
(from	 CLARION-‐H	 addendum)	

 Allows	 for	 “dimension	 NOT	 activated”	 specification	
 Replaces	 dvRepDimension	 specification	 in	 the	 New...Chunk	

methods	 in	 World	
• Note:	 possible	 implications	 for	 simulations	 using	 6.1.0.7	

o New	 ConditionalChunk	 class	
 Replaces	 inner	 Rule.Condition	 class	

o New	 CustomMetaCognitiveActionChunk	 class	
 Initialized	 using	 World	

• Input	 and	 Output	 layers	 in	 implicit	 components	 (e.g.,	 BPNetwork)	 are	 now	
specified	 by	 InputOutputLayer	 instead	 of	 ActivationCollection	

• Feature	 Enhancements	
o Added	 “switch”	 (i.e.,	 PERFORM_LEARNING	 parameter)	 to	 turn	 on/off	 ALL	

learning	 in	 ActionCenteredSubsystem	 and	 MetaCognitiveModule	

o New	 LOCAL_EPISODIC_MEMORY_RETENTION_THESHOLD	 in	
ActionCenteredSubsystem	

 Now	 only	 retains	 previous	 10	 episodes	 in	 local	 memory	 (by	 default)	
 Allows	 for	 better	 memory	 management	

o Added	 time	 stamps	 to	 trace	 logging	
o Added	 variability	 options	 to	 perception	 and	 actuation	 response	 times	 	

(credit	 Emily	 O’Leary)	
 New	 parameters/delegates	 in	 Agent	 to	 facilitate	 this	 feature	

o Added	 optional	 out	 parameter	 to	 GetChosenExternalAction	 (and	
asynchronous	 method)	 to	 return	 the	 activations	 for	 all	 actions	 that	 were	
considered	 during	 action	 decision-‐making	 (credit	 Shane	 Bretz)	

o Various	 improvements/simplifications	 in	 MetaCognitiveModule	
 Added	 OperationOptions	 and	 OutcomeActivationOptions	 	
 Added	 OnTimedEvent	 method	

o Changed	 Deserialize	 methods	 in	 SerializationPlugin	 to	 use	 the	
out	 parameter	 concept	 (instead	 of	 returning	 the	 object)	

 Allows	 for	 a	 cleaner	 serialization	 code	
 Note:	 possible	 implications	 for	 simulations	 using	 6.1.0.7	

• Miscellaneous	 fixes	 and	 additions	 in	 various	 extension	 classes	 	
(i.e.,	 in	 Clarion.Framework.Extensions)	

o Moved	 Set/RemoveRelevance	 methods	 from	 GoalSelectionEquation	
to	 GoalSelectionModule	

 Note:	 possible	 implications	 for	 simulations	 using	 6.1.0.7	
o Added	 GoalSelectionModuleParameters	

• Tutorials	 and	 documentation	 have	 been	 added	 to	 and	 updated	
o Added	 Tutorial	 Table	 of	 Contents	

 Gives	 general	 ordering	 to	 tutorials,	 plus	 makes	 it	 easier	 to	 determine	
where	 specific	 topics	 are	 located	

o Still	 incomplete	 (slated	 for	 the	 next	 release)	
• New	 Samples	

o Inductive	 Reasoning	 (credit	 Dan	 Cannon)	
o Full	 Reasoner	 (credit	 Shane	 Bretz)	

• Many	 bug	 fixes!!!	

As	 always,	 I	 encourage	 you	 to	 take	 a	 moment	 to	 peruse	 all	 of	 the	 documents	 that	 we	 have	
provided	 as	 part	 of	 this	 package;	 especially	 the	 “Getting	 Started”	 guide	 as	 well	 as	 the	 other	
tutorials	 in	 the	 “Tutorials”	 folder.	 Also,	 make	 sure	 that	 you	 read	 through	 and	 agree	 to	 all	 of	
the	 licensing	 terms	 and	 conditions	 before	 you	 start	 using	 the	 library.	

Note	 that	 this	 is	 still	 technically	 a	 beta	 release	 (although	 it	 is	 getting	 very	 close	 to	 being	 an	
official	 release).	 With	 this	 in	 mind,	 you	 should	 be	 aware	 that	 some	 aspects	 of	 the	 library	 are	
incomplete	 at	 this	 point	 or	 are	 still	 in	 development.	 	

If	 you	 have	 any	 questions,	 want	 to	 submit	 a	 bug,	 or	 make	 a	 feature	 request,	 please	 feel	 free	
to	 post	 on	 our	 message	 boards	 (at	 http://www.clarioncognitivearchitecture.com)	 or	 email	
us	 at	 clarion.support@gmail.com	 and	 we	 will	 do	 our	 best	 to	 respond	 back	 to	 you	 as	 quickly	
as	 possible.	

Thank	 you	 again	 for	 downloading	 and	 trying	 out	 the	 Clarion	 Library!	

Sincerely,	

	
Nicholas	 Wilson	 Ph.D.	
Lead	 Developer,	 The	 Clarion	 Team	

 1

Getting Started

© 2013. Nicholas Wilson

Table of Contents

Introduction ... 1
Why C#? .. 2

Installation .. 2

About the Clarion Library package .. 3
Creating a Simulation Project .. 4
Referencing the Clarion Library .. 4
The Clarion Library Namespaces .. 5

Basic Guideline for Setting Up Simulations ... 6

Descriptive vs. Functional Objects .. 6

Introduction

Welcome to Clarion! This guide is intended to help you get started working with the
Clarion Library so that you can create and run your own task simulations using the
Clarion cognitive architecture as your foundation. Clarion is a modern, true hybrid
cognitive architecture that has been under development for many years by Dr. Ron
Sun. Version 6.1.1 of the Clarion Library is the latest version, and is significantly
more powerful and easier to use than its predecessors.

To get the most out of this guide, you should already have a basic knowledge of the
Clarion theory and of cognitive modeling in general. Ideally, you should also be
somewhat familiar with an object-oriented programming language (like Java, C++,
or C#), and with object oriented programming (OO) in general. The Clarion Library,
version 6.1, is written in C#, however if you are used to Java, do not be alarmed, as
the languages are actually quite similar. If you already know Java, learning the
minimal amount of C# that you need will not be very difficult.

In order to help you get familiar with C# and object-oriented programming we have
provided links (like the one above), throughout this guide, to various resources on
the web that we think may be helpful for gaining some extra background on certain
topics and concepts that we will be discussing. So keep your eyes out for those links
and feel free to click on them if you feel you need clarification on something.

Also, while we are certainly not in the business of advertising, if you are looking for
a good reference manual on C#, we would highly recommend “C# [4.0] in a
Nutshell” from O’Reilly Books.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://oreilly.com/catalog/9780596800963/
http://oreilly.com/catalog/9780596800963/

 2

Why C#?

Beginning with version 6.1, the Clarion Library is now written entirely in C#, while
all previous versions were written in Java. “Why the switch to C#?”, you may ask.
Well, we had several reasons for abandoning Java and switching to C#. First, while
both languages are equally “expressive,” we found it much easier to build all of the
new features and capabilities for version 6.1 of the Clarion Library in C#. This is
owing to several language constructs in which Java is either lacking or (in our
opinion) less proficient. Furthermore, C# provides many enhancements over Java,
such as delegates, anonymous (lambda) functions, dynamic binding, enhanced event
mechanisms, simple and straight-forward serialization, and LINQ. These feature
(among others) have had the effect of greatly simplifying several aspects of the
Clarion Library and we are confident that once you begin working with it, you will
agree.

We should also note that, while it was originally developed by Microsoft, C# was and
is intended to be an open language with both ECMA and ISO standards behind it. So
those of you who tend to be afraid of that “evil monopoly” should rest easy. C# can
be developed perfectly well on other operating systems by making use of the open-
source (and free) Mono project development environment (Mono Develop, also
known as Xamarin Studio). We will also point out (again, we are not in the business
of advertising here) that if you prefer developing in Windows, Microsoft also
provides a free version of their software (Visual Studio Express). The Clarion
Library has been tested using both of these development environments, so please
feel free to use whichever you prefer.

At this time, we won’t go any further into discussing why we chose C# over Java (or
a different language for that matter). The debate between the “superiority” of
various programming languages (and styles) is ongoing and eternal. It would not
serve the purpose of this document for us to spend any more time on discussing the
benefits, differences, and/or shortcomings of C# versus Java. However, for those of
you who are interested in further reading, a very thorough breakdown between C#
and Java can be found online on Wikipedia.

We hope, however, that you are at least intrigued enough to want to try out this new
system, so let’s jump into it.

Installation

To begin, you need to know that the new Clarion Library leverages many of the
features specific to version 4.0 of the .NET framework. Therefore, regardless of
which development environment you use, it is import to make sure that you have
the most recent .NET (or Mono) framework installed on your machine. If you are
using Windows XP (service pack 2) or later, the newest .NET framework should be

http://msdn.microsoft.com/en-us/library/ms173171%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/dd264741%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/awbftdfh.aspx
http://msdn.microsoft.com/en-us/library/7ay27kt9%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://monodevelop.com/
http://www.microsoft.com/express/
http://en.wikipedia.org/wiki/Comparison_of_C_Sharp_and_Java

 3

downloadable through Windows update (if it is has not been automatically installed
already). Otherwise, the mono framework can be found here.1

Installing either of the development environments that we have been discussing so
far is fairly straightforward and instructions can easily be found on their websites,
so we won’t get into the details for installing these development environments here.
Instead, we are just going to assume at this point that you have successfully installed
the appropriate framework and development environment and are ready to begin.

About the Clarion Library package

To start, since you are reading this document, we can assume that you have already
downloaded the zip file for the Clarion Library and have unzipped it to a folder
somewhere on your hard drive. Within this folder you will find several things along
with this guide. Specifically, you should note the following contents:

 The Getting Started guide (this document)

 The Clarion Library dynamic link library (dll)

o The “assembly” (i.e., resource library)

 Clarion Library IntelliSense XML file

 A “Tutorials” folder

o Contains guides (like this one) for configuring and customizing
various aspects of the Clarion Library

 A “Samples” folder

o Contains basic, intermediate, and advanced simulation samples

 A “Documentation” folder

o Contains “MSDN-like” API reference documentation for the library

While we have striven, in this implementation, to simplify the process as much as
possible, there can still be a bit of a learning curve when you are first starting with
the Clarion library (and theory for that matter). Therefore, we encourage you to
peruse the various documents, tutorials, and samples that have been included with
the Clarion library before you begin using it. These items are provided in order to
help clarify any confusion that may arise while you are developing your simulations.
Additionally, taking the time to peruse the tutorials first should help minimize the
amount of time it takes you to become a competent builder of Clarion-based agents.

Let’s turn our attention now to setting up a simulation. We will also go over a few
key concepts that you should keep in mind when using the Clarion Library.

1 The individual implementations for the mono framework and development environment vary
somewhat based on the operating system. Therefore, you may need to do some separate searching
online to find the latest builds of mono for your OS.

http://www.mono-project.com/

 4

Creating a Simulation Project

The first thing you need to do when setting up a simulation is to specify a “solution”
for your task simulations. If you have not already created one, you should do so now.
The specifics on how to do this varies slightly based on the development
environment you are using, so please consult the guides for your particular
environment if you need help creating a new solution. Feel free to call your solution
whatever you would like (we suggest calling it “Clarion Simulations”).

After we have created the solution, the next step is to create a new project (again,
please consult the guides for your particular development environment if you need
help with how to do this). A solution can house many different projects, so you do
not need to create a new solution for every simulation you are going to write.
However, each simulation should be in its own project. Creating a new project can
usually be done within the “solution explorer” by simply right-clicking on your
solution and choosing the “new project” option under the “add” menu item. Again,
feel free to name the project whatever you would prefer. We recommend that you
name your project so that it succinctly describes your simulation or task (e.g.,
“SimpleHelloWorld”, as will be demonstrated later in the “Setting Up & Using the ACS”
tutorial).

Referencing the Clarion Library

If you are somewhat unfamiliar with programming, we will need to spend a few
moments discussing the concept of a “resource” (if you are familiar with it then feel
free to skip this part). A resource is a collection (i.e., assembly or library) of objects
(classes, interfaces, delegates, etc.) that you can use within your own code. The
Clarion Library is simply a collection of this nature. In other words, the Clarion
Library is not, in and of itself, executable. Instead, it provides you with the necessary
tools in order to build Clarion-based “agents” within your own executable
simulating environment. In fact, the files located in the “Samples” folder all serve as
examples of this sort.

To use the Clarion Library in our project, we must add it as a resource to our project.
Accomplishing this tends to vary based on the development environment, so you
should consult the guides for your particular one if you need help with how to do
this. However, in general, the process usually involves something like the following:

 Under your project (in the solution explorer), there is a “folder” named
something like “resources” (or possibly “references”). Right-click on that
folder and choose the “add” menu item from the drop-down.

 In the window that comes up, navigate to the location where you unzipped
the Clarion Library, and select the “ClarionLibrary.dll” assembly file.

Once you have completed these steps, the Clarion Library should appear in the
“resources” (or “references”) section under your project in the solution explorer. If
it is listed there, then you have successfully specified the Clarion Library for your
project, and will be able to use it.

 5

Now that you have the Clarion Library resource referenced, lets look at how the
library is structured.

The Clarion Library Namespaces

Clarion

Clarion.Framework Clarion.Plugins Clarion.Samples

Clarion.
Framework.

Core

Clarion.
Framework.
Extensions3

Clarion.
Framework.
Templates

The table above provides you with a hierarchal breakdown of the namespaces for
the Clarion Library. You can consult the API reference document to get a complete
list of all the classes within each namespace. However, in general, the namespaces
are organized as follows:

 Clarion – This is the base namespace for the Clarion Library and it contains
three classes: World, AgentInitializer, &
ImplicitComponentInitializer.

 Clarion.Framework – This namespace contains the majority of the classes
needed for initializing and running a simulation. Most of the classes
contained within this namespace can be correlated directly to terms or
concepts from the Clarion theory.

 Clarion.Framework.Core – This namespace contains the necessary
constructs for the core operation of the system.2

 Clarion.Framework.Extensions3 – This namespace contains extensions
(e.g., meta-cognitive modules, various components, etc.) for the Clarion
Library that, while not (necessarily) being specified within the Clarion theory
itself, can still be used within an agent in the same fashion as the classes
found in the Clarion.Framework namespace.

 Clarion.Framework.Templates – This namespace contains abstract
classes, interfaces, and delegates, etc. that act as "templates" for building
some custom user-defined objects (e.g., implicit components, drives, etc.).

 Clarion.Plugins – This namespace provides various plugins and tools that
may be used in by a simulating environment to enhance the capabilities and
applications of Clarion-based agents setup using the Clarion Library.

 Clarion.Samples – This namespace contains several simulating
environment examples that serve as guides to help you learn how to use the
Clarion Library.

2 You should rarely need to access this namespace in order to initialize or run an agent.
3 Note that an additional namespace, Clarion.Framework.Extensions.Templates, has been added,
which provides some useful templates for creating extensions

 6

We should note that the Clarion.Samples namespace is not actually in the
assembly (i.e., dll file). Instead, the files that constitute this namespace are located in
the “Samples” folder. These samples have been placed in the “Samples“ namespace
because they are provided as part of the overall Clarion Library package (i.e., zip
file), and thus can be considered as being a tangential part of the library.

Basic Guideline for Setting Up Simulations

First, we should stress that there are NO “requirements” for setting up a simulation
(although there are certainly some requirements for setting up an agent). If you
have any prior experience with developing simulations using cognitive
architectures, you are probably aware of just how quickly it can become very
difficult to maintain a strict format for developing simulations, especially as they
increase in complexity. With this in mind, in the Clarion Library, we have resisted
imposing rigid guidelines when creating simulating environments. Instead, we
provide a general outline for setting up and running a simulation. The following
describes the approximate steps you will usually want to take:

1st. Describe the features and objects in the world

2nd. Define the actions and motivations (goals) that will dictate how the
agents interact with the world

3rd. Initialize the agents’ internal functions so that they can make action
decisions based on how they perceive the world

4th. Provide mechanisms to enable the agents to interact with the world

Keep this guideline in mind when you are developing your simulating environment.
Maintaining this approximate structure will help reduce the amount of time you
might need to spend “debugging” your simulation once it is written.

At this point, we will conclude our introduction by talking about an important
concept. That is, the distinction between two key aspects of the Clarion Library:
“descriptive” and “functional” objects.

Descriptive vs. Functional Objects

Let’s begin by talking about descriptive objects. Descriptive objects are objects that
are used to describe the features of things (e.g., the simulating environment, agents,
actions, goals, declarative knowledge, etc.). In other words, they are interested in
how the simulating environment looks. They include things like:

 Dimension-value pairs

 Agents

 Chunks (actions, goals, etc.)

 7

In essence, a descriptive object does exactly what it suggests: it describes things.
Within the Clarion Library, descriptive objects are generated, stored, and retrieved
exclusively through the World singleton object. The World is a so-called “singleton”
object created for you by the Clarion library. It already exists by the time your code
starts running, so it is always available for you to access. Also, it is important to
know that all of your interactions with the World object are done statically. In other
words, making calls to the methods of the “world” is done directly through the class
name. For example, suppose you want to specify the dimension-value pair {Dim1,
Val1} as a feature of the world. The following line of code demonstrates how this
would be accomplished:

DimensionValuePair dv1 = World.NewDimensionValuePair("Dim1", "Val1");

Thinking about it conceptually, the World essentially contains “everything”:

 The entire environment of your task

 The agents that exist within the environment

 Any special “internal” information that pertains to those agents4

There are plenty of more details regarding descriptive objects, but we will get into
those other considerations in later tutorials. However, you should at least grasp the
concept by this point, so we’ll move over to the functional considerations of the
library.

A functional object is an object within the Clarion Library that actually does
something. In other words, functional objects are used to describe the processes and
mechanism that make up the inter-workings of an agent. In general, we refer to
functional objects as “components” or “modules.” These components and modules
include the following:

 Implicit Decision Networks

 Action Rules

 Drives

 Meta-cognitive Modules

 Etc.

Notice that the above names refer less to the actual classes that make up the various
functional objects provided by the Clarion Library and instead represent the
location (or container) in which the functional components are stored within the
agent. These “internal locations” are referred to as the agent’s
InternalContainers5 within the library. We will get into the specifics of this a bit

4 The concept of “agent-specific internal information” is beyond the scope of this guide. Feel free to
consult the “Intermediate Tutorials” for more details concerning this topic.
5 Defined by an enumerator of the same name located within the Agent class

http://msdn.microsoft.com/en-us/library/ff650849.aspx

 8

more in the later tutorials.6 For now, just be aware that the functional objects are
generated using the static “initialize” methods that located in the
AgentInitializer class.

By this point, you now have the necessary foundation to get started with building
simulations using the Clarion Library. In the next tutorial, we will walk you through
a simple example of how to setup a simulating environment, initialize an agent, and
have that agent perform a task within the environment. This walk through can be
found in the “Setting Up & Using the ACS” tutorial, which is located in the “Basic
Tutorials” section of the “Tutorials” folder.

Also, if you have any questions, want to submit a bug, or make a feature request,
please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

6 Specifically, see the “Useful Features” guide located in the “Features & Plugins” section of the
“Tutorials” folders

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

Terms of Use

Licensing Terms & Conditions

1. Preamble: By making use of any copyrighted material within the Clarion Library
package (including, but not limited to: the Clarion Library assembly, sample
source code, documentation, tutorials, etc.), you (the user of the Clarion Library,
including any private person, registered company, partnership, etc.) hereby
agree to abide by the terms and conditions contained herein. The terms of use
specified by this document govern the relationship between you (hereinafter:
the Licensee) and Nicholas Wilson and/or any of his subsidiaries (hereinafter:
the Licensor). This agreement (hereinafter: the License) sets the terms, rights,
restrictions and obligations regarding the access to and use of the Clarion
Library (hereinafter: the Software), which has been created and is owned by the
Licensor, by the Licensee.

2. License Grant: The Licensor hereby grants the Licensee a Personal, Non-
assignable, Non-transferable, Non-commercial (without prior authorization),
Non-exclusive license in accordance with the terms set forth (in addition to any
other legal restrictions set forth by any 3rd party software[s] that are used by
this Software).

1. Limited: The Licensee may use the Software for the purpose of:
1. Running the Software on the Licensee’s Personal (and/or

Workstation) Computer[s], Website[s], and/or Server[s];
2. Allowing 3rd Parties to run the Software on the Licensee’s

Website[s] and/or Server[s];
3. Publishing the Software’s output to the Licensee and 3rd Parties;
4. Distributing Verbatim Copies of the Software’s output;
5. Customizing certain, approved (as specified by the documentation

and/or guides/tutorials, or otherwise permitted by the Licensor),
aspects of the Software to suit the Licensee’s needs and/or
specifications;

6. Distributing derived works, customizations, etc. that make use of
or integrate with the Software, subject to additional terms.

2. Personal: The licensee may not sublicense, lease, rent or otherwise allow
3rd parties to use the Software, or any portions thereof, apart from
executing it in any form and/or apart from running it on the Licensee's
Personal (and/or Workstation) Computer[s], Website[s], and/or
Server[s].

3. Non-Assignable & Non-Transferable: The Licensee may not assign or
otherwise transfer his/her/its rights and duties under this License.

4. Non-Commercial: The Licensee may not use the Software for any
commercial purposes without first receiving express authorization from
the Licensor. For the purpose of this License, commercial purposes

constitute any access and/or use of the Software in conjunction with a
derivative work, customizations, etc. whose intention is (in any way)
related to a monetary or financial gain associated with the access to
and/or use of said works, customizations, etc. (in any form). This includes
the sale, leasing, rental or any other types of monetary transactions
associated with the access and/or use of any website[s], application[s],
script[s], code, etc. that in any way accesses, runs or otherwise makes use
of any part of the Software. The Licensee or any other 3rd party must
obtain express written permission by the Licensor to use the Software for
any of the aforementioned commercial purposes. Furthermore, the
Licensee understands that he/she/it may be required to adhere to
additional terms of use, royalties, payments, or other forms of
compensation, as stipulated by the Licensor, before being granted a
commercial license to access and/or use the Software.

5. Attribution Requirements: Any works, customization, etc. that leverage
and/or use any aspects of the Software must make reference to its use
and provide a citation and/or other form of credit to the Licensor as part
of any documentation, publications, etc. associated with those works,
customizations, etc. Furthermore, the aforementioned documents must
expressly specify where, in what fashion, and to what extent the Software
was used, customized, etc.

6. [Multi-]Site: The Licensee may use the Software on unlimited Personal
(and/or Workstation) Computers, Servers, and/or Websites. However,
the Licensee is afforded this right for his/her/its Computers, Servers,
and/or Websites only.

7. With Support & Maintenance: To the extent permitted under the law,
the Software is provided under an AS-IS basis. The Licensor agrees to
provide some limited support upon request via email
(clarion.support@gmail.com) or through any other mediums (as
stipulated by the Software’s website, tutorials/guides, documentation,
etc.). However, the Licensee acknowledges that this offer of support is not
guaranteed under the License and the Licensor can not be held
accountable for any such support, or lack thereof. Additionally, the
Licensor reserves the right to choose the nature and timeline for
responses to any support-related inquiries made by the Licensee.

8. Trademarks: The Licensor shall retain full title in Trademarks related to
the Software, and any trademarks or trade names contained therein,
including the Software's names, logos, and any/all other intellectual
property related to the Software. Unless specifically stated in this License,
no license shall be made to use, associate or otherwise affiliate the
Software with the Licensee in any manner. The Licensee may not use the
Software’s name, trade name, trademarks, or logo when distributing
derivative works, customizations, etc. to 3rd parties without obtaining
the express written consent by the Licensor.

9. Intellectual Property Rights, & Non-Disclosure: The Licensee hereby
acknowledges that the Software is being provided as a closed source

mailto:clarion.support@gmail.com

product and contains the Licensor’s trade secrets and other proprietary
information that has not been disclosed to the public domain. The
intellectual property within the Software is the sole possession of the
Licensor and the Licensee shall not disclose, reveal, make available or
convey to any 3rd party any portions of said intellectual property,
including the Software’s know-how, means of operations, algorithms,
and/or any other proprietary information (hereinafter: Confidential
Information). The Licensee hereby agrees to refrain from any attempts to
“reverse engineer” or otherwise attain information about any undisclosed
aspect of the Software or any related Confidential Information. The
Licensee’s obligations in this regard shall remain in effect as long as the
Confidential Information does not (i) enter into the public domain by any
voluntary act made by the Licensor; or (ii) The Licensee is ordered by a
definite court order, or any other legal authority, to disclose the
Confidential Information; or (iii) The Confidential Information was
independently developed by a 3rd Party who was not exposed to the
Software. Additionally, the Licensee shall require any 3rd party who
sublicenses any works, customizations, etc. that access or make use of any
part of the Software to sign a non-disclosure agreement no less restrictive
than this License.

3. Termination: The terms of this License shall be until terminated. The Licensor
may terminate this agreement, including the Licensee’s License in the case
where the Licensee:

1. became insolvent or otherwise entered into any liquidation process; or
2. exported the Software to any jurisdiction where the Licensor may not

enforce his rights under the License; or
3. was in breach of any of this License's terms and conditions and such

breach was not resolved immediately upon notification; or
4. was in breach of any of the terms of clause 2 to this License; or
5. in any way attempted to “reverse engineer”, disclose, or otherwise obtain

and/or distribute any Confidential Information regarding the Software;
or

6. otherwise entered into any arrangement which caused the Licensor to be
unable to enforce his/its rights under this License.

4. Compensation: In consideration of the License granted under clause 2 and
conditioned under clause 3, the Licensor reserves the right to seek
compensation or payment from the Licensee, as deemed adequate and/or
necessary by the Licensor. Failure to adhere to the terms set forth by this
License and/or to provide the appropriate compensation or payment (should
one be required) shall be construed as a material breach of this License and may
be liable to legal actions by the Licensor.

5. Fair Use: Any access to and/or use of the Software which falls under the United
States Copyright Law with regard to Fair Use (see title 17, section 107 of U.S.
code) is explicitly exempted from any compensatory requirements stipulated by
this License and are under no threat of legal action by the Licensor. This right is
also extended to any uses of the Software that fall under an equivalent law (or

internationally recognized charter), as stipulated by another U.N. certified nation
besides the United States, regarding the fair use of copyrighted materials.

6. Upgrades, Updates and Fixes: The Licensor may provide the Licensee, from
time to time, with Upgrades, Updates or Fixes, as detailed herein and according
to his/its sole discretion. The Licensee hereby warrants to keep the Software up-
to-date and install all relevant updates and fixes. The Licensee acknowledges
that he/she/it may be required to purchase certain upgrades, according to any
rates set by the Licensor. However, the Licensor agrees to provide updates
and/or fixes free of charge; although, nothing in this License shall require the
Licensor to provide Upgrades, Updates and/or Fixes.

1. Upgrades: For the purpose of this License, an Upgrade shall be a material
amendment in the Software that contains new features and or major
performance improvements and shall be marked as a new version
number. For example, should the Licensee obtain the Software under
version 6.X.X, the subsequent upgrade shall commence at version 7.X.X.

2. Updates: For the purpose of this License, an Update shall be a minor
amendment in the Software, which may contain new features or minor
improvements and shall be marked as a new sub-version number. For
example, should the Licensee obtain the Software under version 6.1.X, the
subsequent update shall commence at version 6.2.X.

3. Fix: For the purpose of this License, a Fix shall be a minor amendment in
the Software, intended to address bugs or alter minor features which
impair the Software's functionality. A fix shall be marked as a new sub-
sub-version number. For example, should the Licensee obtain the
Software under version 6.1.1, the subsequent fix shall commence at
version 6.1.2.

4. Licensing Updates: All versions of the Software (past and present) are
subject to the most current version of this License and only to that
version. The Licensor agrees to clearly and explicitly enumerate any and
all changes to the License as part of any Upgrades, Updates, and/or Fixes
to the Software. In addition, the Licensee reserves the right to refuse any
of these changes by simply discontinuing the use of the Software.

7. Support: The Software is provided with limited support, as detailed in clause 2.7
of this License. The Licensor has agreed to offer support via email
(clarion.support@gmail.com) or through some other form of issue tracking (as
stipulated by the Software’s website, tutorials/guides, documentation, etc.).

1. Bug Notification: The Licensee may provide the Licensor with details
regarding any bug, defect or failure in the Software and should do so
promptly and with no delay from such event. The Licensee must comply
with any request made by the Licensor for information regarding said
bugs, defects or failures and shall furnish him/it with any details that may
be needed in order to reproduce such bugs, defects or failures.

2. Feature Request: The Licensee may request additional features be
added to the Software, provided, however, that (i) the Licensee waives
any claim or right over such feature should it be developed by the
Licensor; (ii) the Licensee shall be prohibited from disclosing such

mailto:clarion.support@gmail.com

feature request, or feature, to any 3rd party directly competing with the
Licensor or any 3rd party which may be, following the development of
such feature, in direct competition with the Licensor; (iii) the Licensee
warrants that the feature does not infringe any 3rd party patent,
trademark, trade-secret or any other intellectual property right; and (iv)
the Licensee developed, envisioned and/or created the feature solely by
himself, herself, or itself.

8. Liability: To the extent permitted under the law, the Software is provided under
an AS-IS basis. The Licensor shall never, and without any limit, be liable for any
damage, cost, expense or any other payment incurred by the Licensee as a result
of the Software’s actions, failures, bugs and/or any other interaction between
the Software and the Licensee’s computer[s], server[s], website[s], derived
work[s], customization[s], other software, or any 3rd party computer[s] or
service[s]. Moreover, the Licensor shall never be liable for any defect in source
code written by the Licensee when relying on the Software or making use of any
portion of the Software’s features, plugins, samples, etc.

9. Warranty:
1. Intellectual Property: The Licensor hereby warrants that, to the best of

his/its knowledge, the Software does not violate or infringe on any 3rd
party claims with regards to intellectual property, patents, and/or
trademarks and that no legal action has been taken against him/it for any
infringement or violation of any 3rd party intellectual property rights.

2. No-Warranty: The Software is provided without any warranty and the
Licensor hereby disclaims any warranty that the Software shall be error
free, without defects or code which may cause damage to the Licensee (as
enumerated in clause 8), or that the Software shall be guaranteed to be
functional. The Licensee shall be solely liable to any damage, defect or
loss incurred as a result of operating the Software and shall undertake the
risks contained in running the Software on the Licensee’s Personal
(and/or Workstation) Computer[s], Server[s] and/or Website[s].

3. Prior Inspection: The Licensor hereby states that he/it has inspected the
Software thoroughly and has found it to be satisfactory and adequate (to
the best of his/its knowledge). Furthermore, the Licensor states that it
does not interfere with regular operation and that it does meet the
standards and scope of those systems and architectures under which it
was tested. The Licensor contends that he/it found that the Software
interacts appropriately with his/its development and test environment[s]
and that it does not infringe on any End User Licensing Agreements for
any software being used to enable its features, capabilities, and/or
services. Given these attempts by the Licensor to verify the safety and
stability of the Software, the Licensee hereby waives any claims regarding
the Software's incompatibility, performance, results, and/or features, and
warrants that he/she/it has inspected the Software to the best of
his/her/its ability before using it.

10. No Refunds: The Licensee warrants that he/she/it has inspected the Software
according to clause 9.3 and that it is adequate to his/her/its needs. Accordingly,

as the Software is an intangible good, the Licensee shall not, ever, be entitled to
any refund, rebate, compensation or restitution for any reason whatsoever, even
if it is determined that the Software contains material flaws.

11. Indemnification: The Licensee hereby warrants to hold the Licensor harmless
and indemnify him/it for any lawsuit brought against it with regards to the
Licensee’s use of the Software, especially in means that violate, breach or
otherwise circumvent this License, the Licensor's intellectual property rights or
the Licensor's title with regards to the Software. Conversely, the Licensor agrees
to promptly notify the Licensee in case of any legal action against the Licensor
that may relate to the Licensee and request the Licensee’s consent prior to any
settlement in relation to such lawsuit or claim.

12. Governing Law, Jurisdiction: The Licensee hereby agrees not to initiate any
class-action lawsuits against the Licensor in relation to this License and to
compensate the Licensor for any court, attorney, or other legal fees should any
claim, brought by the Licensee against the Licensor, be denied either in part or in
full.

Tutorial Table of Contents

© 2013. Nicholas Wilson

A Brief Note:

This document provides a general outline for the tutorials that are provided with
the Clarion Library. While it is by no means exact (or necessarily complete for that
matter), the order in which these tutorials are presented herein represent an
approximate ordering in which they should be viewed. As a general rule of thumb,
by following our recommended order, the material presented within the tutorials
should gradually move from easy to advanced.

Setting Up & Using the ACS (in Basics Tutorials)

Walkthrough of the Simple Hello World Task
The using Clause
Declaring the SimpleHelloWorld Class
The Main Method
Initializing the World
Agent Initialization
Tweaking Parameters

Running a Simulation (& Continued Walkthrough)
Initializing the Sensory Information
Perceiving and Acting
Processing Outcomes and Delivering Feedback
Killing an Agent

Intermediate ACS Setup (in Intermediate Tutorials)

Optimizing Task Performance via “Tuning” Parameters
Making Global Parameter Changes
Making Local Parameter Changes

Setting Up the Working Memory
Manually Setting a Chunk in Working Memory
Using Action Chunks

Setting Up & Using the Goal Structure (in Basics Tutorials)

Setting Up the Goal Structure
 Manually Setting a Goal
 Using Action Chunks

Intermediate MS and MCS Setup (in Intermediate Tutorials)

 Setting Up and Using Drives and Meta-Cognitive Modules
 Initializing a Drive
 The Drive Equation
 Stimulating a Drive
 Accessing Agent Meta Info
 Correlating Drives and Meta-Cognitive Modules
 Meta-Cognitive Module Integration

Basic Customization (in Customizations)

Customized Methods (Using Delegates)
Specifying Delegates as Parameters during Initialization
Creating Custom Rules

Using the SupportCalculator Delegate to Set Up an IRL Rule
Initializing the IRL Rule
Using the SupportCalculator Delegate to Set Up a Fixed Rule

A Note on the Generically Typed
DimensionValuePair<DType,VType> Class

Initializing the Fixed Rule
Generic Equations

Useful Features (in Features & Plugins)

Viewing an Agent’s “Internals”

Logging (using Trace)

The Implicit Component Initializer
Pre-Training
Auto-Encoding
Distributed Dimension-Value Pairs
Populating the Input and Output Layers of an Implicit Component

Timing
Response Time
“Real-time” Mode

Asynchronous Operation

Setting Up & Using the NACS (in Advanced Tutorials)

Setting Up & Performing Reasoning

A Walk-through of the “Simple Reasoner” Task
Distributed Dimension-Value Pairs
Adding Knowledge to the GKS
Initializing Associative Memory Networks
Initializing Associative Rules
Performing Reasoning

Setting Up & Using Episodic Memory
Creating Episodes
Initializing Associative Episodic Memory Networks
Generating New Knowledge and Associative Rules
Performing “Offline” Learning

Advanced ACS Setup (in Advanced Tutorials)

Interacting with the NACS
Making Reasoning Requests
Specifying Alternative Dimensions
Filtering Input/Conclusions
Retrieving Chunks from the GKS
Interacting with Episodic Memory

Retrieving Episodes
“Offline” Learning

Generative Actions
An Example: Using Generative Actions to Change Local Parameters

Using Plugins (in Features & Plugins)

 The Serialization Plugin
Serializing (or Saving) Various Aspects of a Simulating Environment
De-serializing (or Loading) Various Aspects of a Simulating Environment

Interacting with Front-Ends
Remote Simulating Environments

Communicating via XML
Communicating via JSON

The Keyboard and Mouse Plugins
Using the “Built-In” Plugin Actions

Advanced Customization (in Customizations)

Getting Started
ACS Structure
NACS Structure
MS Structure
MCS Structure
Interfaces and Templates

How to Implement a Custom Component
Requirements for Implementing a Custom Component
Implementing a “Factory”
Implementing a “Parameters” class

Local (per instance) Parameters
Global (static) Parameters

Factor # 1
Factor # 2
Factor # 3
Factor # 4
Factor # 5
Factor # 6
Factor # 7

Commiting and Retracting
Using the InitializeOnCommit Property

How to Implement a Custom (Secondary) Drive
Implementing the Nested “Factory” Class
Implementing the Nested “Parameters” Class

Serializing a Custom Component (or Drive)
Specifying the System.Runtime.Serialization Resource
The DataContract Attribute
The DataMember Attribute
Pre/Post Serialization and Deserialization Attributes
Serializing the Global (static) Parameters

 1

Setting Up & Using the ACS

© 2013. Nicholas Wilson

Table of Contents

Walkthrough of the Simple Hello World Task .. 1
The using Clause .. 2
Declaring the SimpleHelloWorld Class .. 2
The Main Method... 2
Initializing the World ... 4
Agent Initialization .. 5
Tweaking Parameters ... 7

Running a Simulation (& Continued Walkthrough) ... 8
Initializing the Sensory Information ... 9
Perceiving and Acting .. 10
Processing Outcomes and Delivering Feedback ... 10
Killing an Agent .. 12

Walkthrough of the Simple Hello World Task

In this section, we will go line-by-line through one of the simplest tasks to simulate:
Hello World. This simple task will provide you with the basics for getting up and
running building simulations in Clarion. It should not, however, be considered to be
the definitive method for developing simulating environments (or constructing
agents for that matter). We encourage you to look at all of the samples and consult
the various guides and documentation when building your own simulations. Once
you get comfortable developing simulations, we encourage you to explore the
capabilities of the Clarion Library and use your own creativity when constructing
your models.

To fully convey the point that simulations need not follow any rigid format, the
SimpleHelloWorld simulation is written entirely within a single method (i.e., the
“Main” method). The basic layout for this task is as follows:

 It uses ONLY the ACS with a reinforcement trainable backpropagation
network in the bottom level and RER (Rule Extraction and Refinement)
turned on in order to extract rules based on the reinforcement.

 The goal is for the agent to learn the following:

If someone says “hello” of “goodbye” to me, then I should respond with either
“hello” or “goodbye” respectively.

 2

 At the end of the task, the above statement should be represented as rules in
the top level of the ACS (having been learned via RER).

 Other than knowing the inputs and outputs, the agent should have no a-priori
knowledge of the task dynamics.

So let’s look now at how we would go about setting up this simple task. The first
thing we need to do is add the “Simple Hello World” sample to our project. This is
generally accomplished by simply right-clicking on your project (i.e., the one we
setup in the “Getting Started Guide”) and choosing the “Add Files” option (under the
“Add” menu item). The file name for this task is “HelloWorld-Simple.cs” and it can be
found in the “Simple” folder in the “Samples” section of the Clarion Library package.
Once you have added the file, it should open in the main window of your
development environment. If it does not, you should be able to open it by double-
clicking on it from the Solution Explorer.

The using Clause

In the previous (“Getting Started”) tutorial, we discussed how to add the Clarion
Library as a resource (or reference) for a simulation project. However, if you are
familiar with Java (or maybe Python), then you will already be aware that a resource
library needs to also be signaled within a class file by specifying an inclusion
keyword at the top of a code file (for example, with the import statement in Java).
C# uses the keyword using. The code below lists the basic resources we use for our
example:

using Clarion;
using Clarion.Framework;

The Clarion and Clarion.Framework namespaces are the primary locations for
the majority of the classes you will need when setting up and using a Clarion-based
agent in your simulation. More advanced examples might use additional libraries.

Declaring the SimpleHelloWorld Class

Now that we have signaled the necessary namespaces, we need to specify the initial
declaration for the class that will perform the task:

public class SimpleHelloWorld

This class contains all of the code for my simulating environment, including the
initialization of the world, my agent, and the mechanisms that allow the agent to
interact with the world. Since this is a simple task, we will actually perform all of
these steps within a single (Main) method.

The Main Method

If you are familiar with Java, C, or C++, you know that a method called Main is where
any program begins its execution. In C#, this routine is always spelled with a capital
letter, and must be declared as static void (or static int, if you want to

 3

return an exit value to the operating system). As is usual for Java, C, or C++,
command-line arguments are handled with the string array, args, passed to the
Main method. While this argument is optional, including it is usually the default
behavior in most development environments. In addition, you may find it
convenient to use in some of your simulations.

static void Main(string[] args)
{
 ...
}

We should also note that it is usually a good idea to limit the amount of work that is
performed in the Main method. In practice, this method should initialize its
enclosing class, writing out a couple of progress messages, and call a few methods to
initiate the task. The major work of the simulation should be performed in other
methods such that your Main method is easy to follow and very high-level. This
being said, the Simple Hello World example does not follow this convention.
Remember, for this particular simulation, we simply wish to demonstrate the
simplicity in which simulations can be created. The Clarion Library will still perform
a task correctly even if you use poor programming practices.

The first lines you will see in the Main method are these:

//Initialize the task
Console.WriteLine("Initializing the Simple Hello World Task");

int CorrectCounter = 0;
int NumberTrials = 10000;
int progress = 0;

World.LoggingLevel = TraceLevel.Warning;

TextWriter orig = Console.Out;
StreamWriter sw = File.CreateText("HelloWorldSimple.txt");

This code first sets up some task-specific variables to use for tracking the results of
the task. It also configures C# to output the results to a text file (instead of to the
console window). You do not need to implement any of this within your simulations.
We have merely implemented it this way here so that the console will look nice and
clean when you actually run the simulation.

Notice also that we specify a value for LoggingLevel. The Clarion Library lets you
trace the inner workings of your agents at varying levels of detail. By default, if
logging is turned on, the logging information gets output to “Clarion Library.log”.
However, if you wish to change this location (or if you want additional details on
how logging works within the Clarion Library) see the “Useful Features” guide1.

1 Located in the “Features & Plugins” section of the “Tutorials” folder

 4

Initializing the World

Some amount of initialization of the world itself is needed before we can run our
task. The next lines of code in our demonstration are these:

DimensionValuePair hi = World.NewDimensionValuePair("Salutation", "Hello");
DimensionValuePair bye = World.NewDimensionValuePair("Salutation", "Goodbye");

When building a simulation, the first thing we need to do is describe what the
simulating environment looks like. For example, you will usually want to tell the
World about is the existence of any dimension-value pairs we need for our task. For
our Simple Hello World task, there is one dimension named “Salutation”, and it is
given a value of either “Hello” or “Goodbye.” These DV pairs effectively represent
the simulating environment for this task.

Note that we can refer to these objects as often as we need to as we continue setting
up the simulation by either maintaining links (i.e., pointers) to them within our
simulation, or by calling the “Get” methods that are provided in the World singleton
object. Later, you will see that we can use our descriptive objects to create input
nodes to the agent’s implicit decision network. However, for now, simply note that
these dimension-value pairs can now be considered to exist within the world.

We now need to define the external actions that the agent will be able to perform (in
this case “Hello” and “Goodbye”) when presented with salutation inputs. The
NewExternalActionChunk method accomplishes this:

ExternalActionChunk sayHi = World.NewExternalActionChunk("Hello");
ExternalActionChunk sayBye = World.NewExternalActionChunk("Goodbye");

Here, our action chunks are about the simplest possible: indicating either
responding “Hello” or “Goodbye”, which is all we need for this task. Note, however,
that in practice, action chunks can be made as complex as required (since they are in
fact chunks2).

With these essential initializations out of the way, the simulating environment has
essentially been set up. There are, of course, more complex aspects that can
potentially be set up here, but we will leave those alone for now and address them
in the other, more advanced, guides. At this point, it is time to initialize our agent
(whom we will call John):

//Initialize the Agent
Agent John = World.NewAgent("John");

John is initialized within the world just like any other descriptive object, because
technically John is just another object in the world. This is accomplished by calling
the NewAgent method. Note that we also give the agent its name at this point, which
is the string parameter "John" passed to NewAgent. Also note that this name (or

2 Chunks are a well-established representational concept that contain arbitrarily large collections of
dimension-value pairs

 5

“label” when we are creating goal/action/declarative chunks) is optional and is only
needed if you later want to “retrieve”, or Get, the agent (or chunk) back from the
World.

To this end, keep in mind that since the names/labels are optional, they can be
assigned to multiple agents/chunks. In other words, it is completely possible to have
more than one agent in the world named John. The system will not break if you
want to give your (non dimension-value pair) world objects the same name/label.
However, if you choose to do this, it will limit your ability to retrieve the objects
from the World using the Get...(by_name_or_label) methods. In particular,
when multiple world objects (of the same object type) have the same name/label,
the Get methods cannot guarantee that the object that is retrieved will be the object
you intended.

With that in mind, if you plan to build a simulating environment with multiple
agents, it is very important to make sure you segregate your agent initialization
from your descriptive object declaration. Otherwise, you could inadvertently create
multiple “copies” of the same object and potentially cause major problems with the
operation of your task (if you also use the World.Get... methods).

Moving back to our example, we have now created an “empty” agent. We say it is
empty, because it does not know anything about those DV pairs and action chunks
that were set up earlier, nor does it contain any functional mechanisms with which
to interact with the world. Therefore, we need to finish setting up our agent, John.

Agent Initialization

In this task, the only functional object we need to initialize ahead of time is an
Implicit Decision Network (IDN) in the bottom level of the ACS. To set up this
network, we will initialize a backpropagation network. More specifically we use a
simplified Q-learning backpropagation network. This line demonstrates how to
accomplish this initialization:

SimplifiedQBPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, SimplifiedQBPNetwork.Factory);

The network type that we use for the implicit decision network in this simulation is
a SimplifiedQBPNetwork, one of several artificial neural network components
located in the Clarion.Framework namespace of the Clarion Library. We generate
this network (and associate it with agent John) through the AgentInitializer
(located, as with the World class, within the root Clarion namespace).

Note again that the AgentInitializer is the primary means by which we attach
the myriad of internal functional objects (e.g., implicit components, drives, meta-
cognitive modules, etc.) to a Clarion agent. Along with the World class, the agent
initializer represents one of the primary foundational objects for interacting with a
Clarion agent within a simulated task environment.

As we mentioned earlier, for the simple Hello World task, all we need is an implicit
decision network (or IDN) in the bottom-level of the ACS, so we call the

 6

InitializeImplicitDecisionNetwork method to generate the neural network.
To initialize the IDN, we pass two items to the initializer method in the
AgentInitializer:

 The agent (John, in this case) to which the network is to be attached

 A factory that will be used to generate the network we want

Note that this method will place the network within John in an “initializing” state
(more on this in a moment). Since a complex agent could literally have dozens or
even hundreds of special-purpose networks, we have implemented a standard
factory pattern, which allows for you to specify any type of internal object you
desire (including customized ones of your own creation3). Here, we want to use a
SimplifiedQBPNetwork so we pass in the factory that the system will use to
generate this network.

For all of the internal functional objects in the Clarion Library (as specified by the
Clarion theory), a factory has already been provided for you and can be accessed by
statically invoking the Factory property. In our current example, specifying
SimplifiedQBPNetwork.Factory will provide the factory for creating the
SimplifiedQBPNetwork in the bottom level of the ACS. Note here that we can also
pass along any number of parameters to the factory. In this particular example, we
do not need to do so, however, you will see other examples as you go along with
these tutorials where such parameters are required. For the “built-in” functional
objects, lists for both the required and optional parameters can be found in the
documentation.

The InitializeImplicitDecisionNetwork returns an implicit component (of
the type that is specified by the factory). For our example, we are initializing a
SimplifiedQBPNetwork, and have assigned it to the net variable. This net can be
considered as being part of our agent, John. In other words, the network has not
only been generated by calling the initialize method, but it has also been attached to
the agent that was specified when the method was called. This means that the
network belongs to the agent and cannot be used by any other agent.

In this simple example, we are creating only one neural network component (as an
IDN in the bottom-level of the ACS). In more elaborate simulations, you will, no
doubt, call several other methods in AgentInitializer many times in order to
generate all of the components you will need for constructing your agents. For
details on initializing functional objects (within the other “agent internals
containers”) consult the documentation for the various “Initialize” methods in
the AgentInitializer. Additionally, further information on initializing certain
other components can also be found in the later, more advanced, guides.

At this point, however, we need to finish initializing our IDN, net, using the DV pairs
and action chunks that we defined earlier. This will give our agent, John, the ability

3 See the “Advanced Customization” tutorial (located in the “Customizations” section of the “Tutorials”
folder) for details on how to implement a custom component

http://msdn.microsoft.com/en-us/library/ee817667.aspx
http://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx

 7

to choose actions based upon the sensory information it receives from the world.
The four lines below accomplish this:

net.Input.Add(hi);
net.Input.Add(bye);

net.Output.Add(sayHi);
net.Output.Add(sayBye);

First, we begin by specifying two input nodes for the two DV pairs that represent the
salutations. To accomplish this, we call the Input.Add method. Similarly, we will
also add two output nodes to represent the two response actions by calling
Output.Add. Note that the number of nodes in the hidden layer is computed
automatically, which is fine for this example. In more advanced simulations,
however, you can take control of this number, but that is outside the scope of this
guide (see the documentation for more details).

As part of the initialization phase for any simulation, your job will be to create and
set up all of the functional objects you wish for your agent(s) to use. During
initialization these objects are open and available for you to configure using your
initialization code. Once initialized, the objects will exist in a special, temporary,
initialization area within the agent until you are finished setting them up. When you
are finished, you will need to signal to the agent that it can begin using the
functional object. When the agent is notified of this fact, it will remove the object
from the temporary location and wire it into the appropriate container (e.g., the
bottom level of the ACS in our current example). At that point, in most cases, you
will NOT be able to make additional changes to that functional object (except to
“tune” its parameters). In the Clarion Library, this concept is called “committing.” All
functional objects in the Clarion Library MUST be “committed” to an agent after
they have been initialized. Committing a functional object makes it “immutable” (i.e.,
“locked” or read only). You should not attempt to make changes after you make this
call.

At this point we have finished initializing net; however, we now need to tell John
that it can begin using the network. To signal to our agent that we have completed
the initialization of net we make the Commit call:

John.Commit(net);

Tweaking Parameters

The final initialization that is usually performed is parameter tweaking. The Clarion
technical specification (which can be found on Ron Sun’s website) contains a list of
default settings for the various mechanisms described by the Clarion theory.
However, you will probably find that, in many cases, these settings do not provide
you with the optimal results for your task. In such cases, you will likely want to tune
some of the parameters that are introduced in this tutorial.

http://codebetter.com/patricksmacchia/2008/01/13/immutable-types-understand-them-and-use-them/
http://www.cogsci.rpi.edu/~rsun/clarion-pub.html

 8

We will discuss how to tweak parameters in the next guide (i.e. the “Intermediate
ACS Setup” tutorial located in the “Intermediate Tutorials” section of the “Tutorials”
folder). However, for the Simple Hello World task, the following parameter settings
are used to optimize the agent’s performance:

net.Parameters.LEARNING_RATE = 1;
John.ACS.Parameters.PERFORM_RER_REFINEMENT = false;

Running a Simulation (& Continued Walkthrough)

In addition to initializing the world and agents, it is also the job of a simulating
environment to act as the intermediary between the agent and the world during the
actual running of a task.

In general, the simulating environment needs to handle the following
communications:

1. Specifying to an agent the sensory information it perceives on a given
perception-action cycle

2. Capturing and recording the action that is chosen by an agent

3. Updating the state of the world (if necessary) based on an agent’s actions

4. Providing feedback to an agent as to the “goodness” or “badness” of its
actions

5. Tracking the performance of the agent (for the sake of reporting results at
the end of the task)

Now that the world and agent have been set up, it is time to give John a means for
interacting with the world. This is where the bulk of our simulation code actually
comes into play.

//Run the task
Console.WriteLine("Running the Simple Hello World Task");
Console.SetOut(sw);

Random rand = new Random();
SensoryInformation si;

ExternalActionChunk chosen;

The above lines mainly set up some variables that will be useful as part of running
the simulation: a random number generator (rand) for choosing the configuration
of the sensory information, a sensory information pointer to hold onto the sensory
information for the current perception-action cycle, and a variable named chosen to
capture the action chosen by the agent.

The next line begins the major body of the task:

 9

The for loop (above) is in charge of the “flow” for the task. Inside this loop, the
sensory information is set up for each perception-action cycle (i.e., each trial), the
chosen action is captured, feedback is given, and the agent’s performance is
recorded.

Initializing the Sensory Information

The first thing we must do on any given trial is get a sensory information object. The
code below handles this request:

si = World.NewSensoryInformation(John);

We obtain sensory information objects from the world by calling the
NewSensoryInformation method and specifying the agent for whom the sensory
information is intended. Note that, while it isn’t particularly pertinent for the
present task, sensory information objects cannot be shared between agents. This is
necessary because the sensory information object not only tracks the state of the
world (as seen by that agent), but it also tracks the “internal meta information” of an
agent (i.e., the state of its goals, working memory, drives, etc.). If you would like to
“share” a certain configuration of the world between two agents, an overload for the
NewSensoryInformation method exists that will copy the configuration of a
sensory information object into a new sensory information object (for the specified
agent).

These next lines in the simulation are used to decide on the configuration for a
sensory information object:

//Randomly choose an input to perceive.
if (rand.NextDouble() < .5)
{
 //Say "Hello"
 si.Add(hi, hi.MAXIMUM_ACTIVATION);
 si.Add(bye, bye.MINIMUM_ACTIVATION);
}
else
{
 //Say "Goodbye"
 si.Add(hi, hi.MINIMUM_ACTIVATION);
 si.Add(bye, bye.MAXIMUM_ACTIVATION);
}

For our simple task, we are basically just “flipping a coin” to decide whether John
perceives someone saying “hi” or “bye.” More complex simulating environments will
likely have more complicated methods for determining the appropriate sensory
information. However, for this task, a random choice is sufficient.

for (int i = 0; i < NumberTrials; i++)
{
 ...
}

 10

We set up the sensory information object by adding descriptive objects to it (along
with an activation level for each object). This is done using the Add method.4 Also,
note that the agent’s “internal meta information” is pre-loaded into the sensory
information object, so if your simulation needs to set the activation for a part of the
agent’s “internal state”, you would do so by “setting” the activation rather than
“adding” it. The following is an example of how you could do this:

si[...] = 1;

Perceiving and Acting

The next lines initiate the agent’s perception of the sensory information and retrieve
the agent’s action (when one is chosen):

//Perceive the sensory information
John.Perceive(si);

//Choose an action
chosen = John.GetChosenExternalAction(si);

The Perceive method initiates the process of decision-making and
GetChosenExternalAction returns the action that is chosen by John (given the
current sensory information). Note that both of these methods can only be called
ONCE for any given sensory information object (or time stamp). This means that an
agent cannot perceive a sensory information object more than once, so you must
generate a new sensory information object each time you want your agent to
perceive something. It also means that your agent will not repeat itself, so make sure
that you either apply its action immediately or store its choice somewhere in the
simulating environment.

The above example represents the simplest method for initiating a perception-
action cycle. There are other, more complicated, ways to interact with an agent (e.g.,
using asynchronous operations5). These other methods are outside of the scope of
this guide, so we will leave further discussion on that topic to later, more advanced,
guides.

Processing Outcomes and Delivering Feedback

After the chosen action has been captured, the following if statement determines
the “consequences” of that action, records the outcome, and reward or punishes
John accordingly:

4 The +/- operators can also be used to add or remove items from the sensory information (as well
as the inputs/outputs of implicit components). Note, however, that the activation when using these
operations will always be set to the minimum activation.
5 Details on how to set up asynchronous operation can be found in the “Useful Features” tutorial
(located in the “Features & Plugins” section of the “Tutorials” folder)

 11

//Deliver appropriate feedback to the agent
if (chosen == sayHi)
{
 //The agent said "Hello".
 if (si[hi] == hi.MAXIMUM_ACTIVATION)
 {
 //The agent was right.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was correct");
 //Record the agent's success.
 CorrectCounter++;
 //Give positive feedback.
 John.ReceiveFeedback(si, 1.0);
 }
 else
 {
 //The agent was wrong.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was incorrect");
 //Give negative feedback.
 John.ReceiveFeedback(si, 0.0);
 }
}
else
{
 //The agent said "Goodbye".
 if (si[bye] == bye.MAXIMUM_ACTIVATION)
 {
 //The agent was right.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was correct");
 //Record the agent's success.
 CorrectCounter++;
 //Give positive feedback.
 John.ReceiveFeedback(si, 1.0);
 }
 else
 {
 //The agent was wrong.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was incorrect");
 //Give negative feedback.
 John.ReceiveFeedback(si, 0.0);
 }
}

You should notice two primary things about this segment of code. First, notice that
we are able to compare our actions and sensory information objects using the
standard “==” comparator. All of the descriptive objects in the Clarion Library have
had their operations overloaded so that they act more like value types.6 Second, to
give John feedback, all we need to do is call the ReceiveFeedback method. Calling
this method automatically initiates a round of learning inside John. Even if we were

6 This is also the case for sensory information objects, and the input/output layers of implicit
components.

http://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

 12

using a Q-learning network instead of a simplified Q-learning network, we would
still only need to call ReceiveFeedback and the system will take care of the rest.7

Note also that the feedback on this simulation is between 0 and 1. Feel free to use
whatever scales you want (although see the “Intermediate ACS Setup” for additional
considerations regarding this). However, unless it is absolutely necessary, you
should try to stick to keeping your activations and feedback between 0 and 1. Using
this convention, a feedback of 1 would be tantamount to the highest level of positive
feedback possible, and 0 would equate to the highest level of negative feedback
(with .5 being more or less neutral feedback).

The remaining lines of code in the simulation basically just update the progress of
the simulation and report the results after all of the trials have completed.
Therefore, we will not go over these lines. However, once we have finished
processing all of our results, there is still one more thing that has to be done before
out simulation can be exited.

Killing an Agent

The last step we need to take in order to terminate our simulation is to terminate
our agent. For our current example, we kill John by calling the following line of
code:

John.Die();

This command initiates the termination of all of John’s internal processes (in other
words, he “dies”). Note that even though the agent’s processes are terminated, its
internal configuration is still maintained. This means you can still access/view or
“save” (i.e., serialize) the agent’s internal configuration even after the agent dies.8 If
we didn’t remember to kill John, then the application would not be able to close
because John’s internal mechanisms would still be running. However, once John is
dead, the simulation will be able to exit by returning from the Main method.

At this point, you should have everything you need to start writing your first
(simple) simulation. If you get stuck at any point, consult this guide again or take a
look at the API resource document (in the “Documentation” folder). When you are
ready to move on to the more complicated aspects of the ACS, the next tutorial
(“Intermediate ACS Setup”), can be found in the “Intermediate Tutorials” section of
the “Tutorials” folder.

In addition, you may also want to check out the “Useful Features” tutorial.9 It
contains information about some of the “built-in” enhancements of the Clarion

7 In the case that an implicit component expects new input (as is the case for Q-learning), the system
will actually wait until the perceive method is called on the next sensory information object before
performing learning.
8 Details on the latter can be found in the “Using Plugins” guide (located in the “Features & Plugins”
section).
9 Located in the “Features & Plugins” section of the “Tutorials” folder.

 13

Library. These enhancements have been designed to aid you in the development of
your simulating environments.

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Intermediate ACS Setup

© 2013. Nicholas Wilson

Table of Contents

Optimizing Task Performance via “Tuning” Parameters ... 1
Making Global Parameter Changes .. 2
Making Local Parameter Changes .. 3

Setting Up the Working Memory ... 4
Manually Setting a Chunk in Working Memory ... 5
Using Action Chunks .. 5

Optimizing Task Performance via “Tuning” Parameters

Frequently, you will find that a task runs reasonably well by simply setting up an
agent using all of the default settings. However, there will likely be times where the
defaults simply do not provide “optimal” performance and you may want to “tune”
the agent’s settings to get it to perform a task more effectively.

The Clarion theory specifies several parameters for various mechanisms (see
technical specification document here for more details). These parameters have
been implemented into the Clarion Library in two ways: as global (static)
parameters, and as local (instance) parameters. The parameters have been stored
within “Parameters” classes, which are located throughout the system based upon
their most logical position (as specified by the Clarion theory). For example, the
RefineableActionRule class implements a rule type that is refineable (and is
usually extracted via RER). As part of being “refineable”, these rules contain
methods for generalization and specialization, each of which have some threshold
parameters that can be “tuned” in order to optimize the frequency in which either
process (i.e., specialization or generalization) occurs. The following code (from the
“Full Hello World”1 simulation sample) demonstrates how two of these thresholds
might be changed during the initialization of a task:

RefineableActionRule.GlobalParameters.SPECIALIZATION_THRESHOLD_1 = -.6;
RefineableActionRule.GlobalParameters.GENERALIZATION_THRESHOLD_1 = -.2;

In addition to providing all of the default parameters specified by the Clarion theory,
the Clarion Library also provides several extra parameters designed to aid you in
running a task. For example, suppose we wanted to turn off the various forms of
learning that take place in the ACS (i.e., rule refinement, bottom-up learning or rule

1 Located in the “Intermediate” section of the “Samples” folder (filename: “HelloWorld - Full.cs”).

http://www.cogsci.rpi.edu/~rsun/clarion-pub.html

 2

extraction, top-down learning, and/or learning in the bottom level). The following
lines of code could be used to accomplish this:

ActionCenteredSubsystem.GlobalParameters.PERFORM_RER_REFINEMENT = false;
ActionCenteredSubsystem.GlobalParameters.PERFORM_RULE_EXTRACTION = false;
ActionCenteredSubsystem.GlobalParameters.PERFORM_TOP_DOWN_LEARNING = false;
ActionCenteredSubsystem.GlobalParameters.PERFORM_BL_LEARNING = false;

All of these are examples of “global” parameter changes, so let’s begin our discussion
on how to make parameter changes by first considering the global (static) method
for making parameter changes.

Making Global Parameter Changes

The first thing you need to know with regards to global parameter changes is how
these parameters are accessed. As mentioned earlier, global parameters are stored
statically. This means that they are accessible from a static call (i.e., using the class
name) to the class with whom the parameters are associated. For all of the “built-in”
classes defined by the Clarion Library, the global parameters can be found within
the parameters class that is returned by the GlobalParameters property. In our
earlier examples, the global parameters associated with specialization and
generalization of action rules were accessed via:

RefineableActionRule.GlobalParameters

And the parameters for turning on and off learning in the ACS were accessed by:

ActionCenteredSubsystem.GlobalParameters

However, before you begin tuning all of your parameters using the global (static)
method, it is essential to understand a few important points about how global
parameters are implemented and what the consequences are with regards to how
and when global parameter changes can be made.

First, global parameters changes are only applicable to an instance of a class
BEFORE it is initialized. The (static) global parameters for any given class are
only used during the initialization process in order to set the values of the local
parameters of an instance. Once the instance has been initialized, it will thereafter
only use the local parameters. In other words, making a global parameter change
AFTER an instance of a class has been initialized will have NO effect on the
corresponding local parameter for that instance. For example, let’s look at the
following lines of code:

Agent John = World.NewAgent("John");

ActionCenteredSubsystem.GlobalParameters.PERFORM_RER_REFINEMENT = false;

Note that the ACS is initialized as part of the initialization of an agent, so John’s ACS
will already be instantiated by the time the global parameter change is made (in the
second line). As a result, if it was our intention to turn off refinement in John’s ACS,

 3

our code (from above) would fail. Instead, the local PERFORM_RER_REFINEMENT
parameter would still be set to true and John’s ACS would still perform
refinement.2 The correct way of changing the parameter globally (so as to achieve
our intended behavior) would be as follows:

ActionCenteredSubsystem.GlobalParameters.PERFORM_RER_REFINEMENT = false;

Agent John = World.NewAgent("John");

Moving on, the second thing you need to know is that, for all of the “built-in” classes
of the Clarion Library, the global parameters have been set up such that they can be
changed at any point within the inheritance hierarchy. For example, suppose you
wanted to change the POSITIVE_MATCH_THRESHOLD parameter for ALL rules
(regardless of their type). The following line of code would accomplish this:

Rule.GlobalParameters.POSITIVE_MATCH_THRESHOLD = .75;

This command will change the parameter for any class that derives from Rule (e.g.,
RefineableActionRule, IRLRule, AssociativeRule, etc.). However, suppose
you just wanted to change the POSITIVE_MATCH_THRESHOLD parameter for IRL
rules only. This would be accomplished in essential the same way as before, except
you would call it on the IRLRule class instead:

IRLRule.GlobalParameters.POSITIVE_MATCH_THRESHOLD = .75;

Making parameter changes at different points in the inheritance hierarchy provides
a convenient way for making wholesale (and possibly even targeted) parameter
tweaks. However, you may find that you want to change the parameters for specific
instances of a class, or that you want different instances of a class to have slightly
different settings (e.g., depending on where it is located within an agent, or based
upon the “group” of the agent in which it was initialized). For this reason, the
Clarion Library also provides a method for changing parameters locally.

Making Local Parameter Changes

The other method for performing parameter changes within the Clarion Library is to
make such changes on a per-instance basis. This is what we refer to as “local”
parameter changing. Local parameter changes are made on instances of a class
through its Parameters property. For example, if we wanted to change the
PERFORM_RER_REFINEMENT parameter for just John’s ACS (from the previous
example), then we could accomplish this by doing the following:

John.ACS.Parameters.PERFORM_RER_REFINEMENT = false;

All of the “built-in” classes in the Clarion Library (which contain parameters) have a
local Parameters property. In addition, unlike the global parameters, local

2 Although the local parameter will be changed for any agents that are initialized AFTER the global
parameter change is made

 4

parameters can be tuned at any point (after the local instance has been initialized, of
course). Note that the local parameters are not subject to the “immutable” (that is,
read-only) restriction placed on an agent’s internal (functional) objects, so they can
be altered even after these objects have been “committed” to the agent. For example,
suppose you wanted to change the LEARNING_RATE parameter for an instance of a
SimplifiedQBPNetwork (called net) that was initialized within the bottom level of
John’s ACS. The following code could be called at any point during the task:

//Retrieves the network from the bottom level of John's ACS
SimplifiedQBPNetwork net = (SimplifiedQBPNetwork)John.
 GetInternals(Agent.Internals.IMPLICIT_DECISION_NETWORKS).First();

net.Parameters.LEARNING_RATE = .5;

This parameter change will take effect the next time the learning rate is applied
(which is presumably the next time John receives feedback). Note also that the first
line of code (above) will retrieve the network from the bottom level of John’s ACS,
but only if it is either by itself in the bottom level of John’s ACS or it is the first
network in the collection that is returned by the GetInternals method. We won’t
get into the specifics of the GetInternals method at this point. Instead, you can
consult the “Useful Features” tutorial3 for more information about how to use this
method.

Finally, we should also mention here that there is an additional way to change
parameters in a more “automatic” fashion (i.e., by having either the ACS or a module
within the MCS initiate the parameter change). However, using this method is
beyond the scope of this tutorial, as it makes use of a concept called “Generative
Actions” (which we will discuss in a later tutorial4).

At this point, we have covered the two primary techniques for changing parameters.
These techniques should suffice any time it is necessary to tune a simulation.

Setting Up the Working Memory

In this section we will discuss how to set up and use the working memory. Broadly
speaking, the working memory can be thought of as being a “container” within an
agent that holds knowledge about the world (i.e., declarative chunks, previous
action chunks, etc.). Technically speaking, it is located within the ACS. However, all
interaction with the working memory (from the simulating environment) is
performed directly via the Agent class. For instance, we can view the contents of
working memory by calling the GetInternals method. The code below
demonstrates how we might accomplish this for our agent, John:

IEnumerable<Chunk> wmContents =
 (IEnumerable<Chunk>)John.GetInternals

3 Located in the “Features & Plugins” section of the “Tutorials” folder.
4 See the “Advanced ACS Setup” tutorial in the “Advanced Tutorials” section of the “Tutorials” folder.

 5

 (Agent.InternalWorldObjectContainers.WORKING_MEMORY);

Note that the working memory can hold any type of chunk. Additionally, whenever a
chunk is “set” in the working memory, it becomes a part of the “internal sensory
information” and will automatically be “activated” in the SensoryInformation the
next time one is perceived.

World objects (i.e., chunks) are added to working memory either manually or by
using a “working memory update action chunk.” First, let’s look at how chunks can
be set manually.

Manually Setting a Chunk in Working Memory

The simplest way to “set” (or add) a chunk in working memory is to do it manually.
We do this by calling the SetWMChunk method for the agent where the chunk is
being set in working memory. The code below demonstrates how we can do this for
our agent, John:

John.SetWMChunk(ch, 1);

To set a chunk in working memory we must specify two things when calling the
above method: the chunk to be set and the “activation level” for that chunk. This
will “set” (or add) the chunk in working memory. To “deactivate” (or remove) the
chunk from working memory we call the ResetWMChunk method. The following
code demonstrates how we can manually reset (i.e., deactivate or remove) the
chunk in working memory:

John.ResetWMChunk(ch);

These two simple methods provide you with all of the power you need to be able to
use chunks within working memory. However, manually setting working memory
may not be enough for your simulating environment. Recall that the Clarion theory
provides many more details regarding various additional methods for setting
chunks in working memory. For example, we can use “working memory actions” in
the ACS or in the MCS to perform operations on the working memory itself. In the
following section, we will look at how chunks can be set using “working memory
actions” in the ACS.

Using Action Chunks

To begin, while the Clarion theory refers to actions that affect the working memory
as being “working memory actions”, the implementation uses a clearer term for
describing these sorts of actions. In the Clarion Library, actions that perform
updates on the working memory are defined using the
WorkingMemoryUpdateActionChunk class. The contents of these action chunks
contain information about the sorts of updates that are to be performed. For
example, suppose we want an action that “sets” the chunk ch in working memory.
The following code sets up such an action:

 6

WorkingMemoryUpdateActionChunk wmAct = World.NewWorkingMemoryUpdateActionChunk();

wmAct.Add(WorkingMemory.RecognizedActions.SET, ch);

Note that we specify, as the first parameter in our Add method, an enumerator
called RecognizedActions. Several classes within the Clarion Library (namely
those mechanism that can be manipulated using actions, e.g., the
NonActionCeneteredSubsystem, the GoalStructure, WorkingMemory, etc.)
define a RecognizedActions enumerator. This enumerator provides the list of
commands that an action can perform on an instance of that class. The
WorkingMemory recognizes four types of actions:

 SET. “Adds” the chunk to working memory

 RESET. “Removes” the chunk from working memory

 RESET_ALL. “Removes” ALL of the chunks from working memory

 SET_RESET. Combines the RESET_ALL and SET actions

If we want a component in the ACS to use this action, all we have to do is specify it in
the output layer of the component. Below is an example of how we would set up this
action in a network on the bottom level of the ACS.

... //Elided code performing additional initialization for the network

net.Output.Add(wmAct);

Now, whenever the ACS selects this WorkingMemoryUpdateActionChunk, the
system will perform the commands specified by that action.

At this point, you now know how to make use of the working memory and how to
update it via two different methods. This concludes the tutorial for the intermediate
aspects of the ACS. In the final guides on the ACS, we will cover:

 “Basic Customization” – How to do some basic customizations in the Clarion
Library. As this relates to the ACS, this guide covers how to use delegates to
setup IRL and Fixed rules in the top level.5

 “Advanced ACS Setup” – Covers how to interface the ACS with the NACS.6
Note that you should familiarize yourself with setting up the NACS first
before looking at this guide.7

Remember, as always, feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

5 This tutorial can be found in the “Customizations” section of the “Tutorials” folder.
6 This guide can be found in the “Advanced Tutorials” section of the “Tutorials” folder.
7 The details for setting up the NACS can be found in the “Setting up and Using the NACS” tutorial,
which is located alongside the “Advanced ACS Setup” guide

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Setting Up & Using the Goal Structure

© 2013. Nicholas Wilson

Table of Contents

Setting Up the Goal Structure ... 1
Manually Setting a Goal .. 2
Using Action Chunks .. 3

Setting Up the Goal Structure

In this section we will discuss how to set up and use the Goal Structure. Broadly
speaking, the goal structure can be thought of as being a “container” within an agent
that holds the agent’s goals (in the form of GoalChunk world objects). Technically
speaking, it is located within the top level of the MS. However, all interaction with
the goal structure (from the simulating environment) is performed directly via the
Agent class. For instance, we can view the contents of the goal structure by calling
the GetInternals method. The code below demonstrates how we might
accomplish this for our agent, John:

//Gets all of the items in the goal structure
IEnumerable<GoalChunk> gsContents =
 (IEnumerable<GoalChunk>)John.GetInternals
 (Agent.InternalWorldObjectContainers.GOAL_STRUCTURE);

//Gets the current goal
GoalChunk currentGoal = John.CurrentGoal;

Like actions, goals are represented as chunks (i.e., using the GoalChunk class) and
are initialized through the World singleton object:

GoalChunk g = World.NewGoalChunk();

There are also two parameters that you can set in order to “tune” the behavior of the
goal structure. They are located in the parameters class of the
MotivationalSubsystem and can be used to specify:

1. The behavior of the goal structure (i.e., does it behave like a list or a stack)

2. How to set the activation for the current goal (i.e., use the actual activation
specified when the goal was set, or use the full activation for the goal)

Below is an example of how to set these parameters (locally) for our agent, John:

John.MS.Parameters.CURRENT_GOAL_ACTIVATION_OPTION =

 2

 MotivationalSubsystem.CurrentGoalActivationOptions.FULL;

John.MS.Parameters.GOAL_STRUCTURE_BEHAVIOR_OPTION =
 MotivationalSubsystem.GoalStructureBehaviorOptions.STACK;

The following lines of code demonstrate how a goal is initialized and used as part of
the input for a component (in this example, a SimplifiedQBPNetwork used in the
bottom level of the ACS):

... //Elided code initializing other world objects

GoalChunk g = World.NewGoalChunk();
Agent John = World.NewAgent("John");

SimplifiedQBPNetwork net =
 AgentInitializer.InitializeImplicitDecisionNetwork(John,
 SimplifiedQBPNetwork.Factory);

net.Input.Add(g);

... //Elided code performing additional initialization for the network

Note that all of the goals in the world are always specified as part of the “internal
sensory information” and will automatically be “activated” in the
SensoryInformation the next time one is perceived.

Now that we have shown you how to setup an agent to use goals, you need to know
how to “activate” them. There are two methods for accomplishing this. The first is to
set goals in the goal structure manually. The second is to set goals by using the “goal
structure update action chunk.” We begin by looking at how chunks are set
manually.

Manually Setting a Goal

The simplest way to “activate” (or add) a goal in the goal structure is to manually
“set” it. We do this by calling the SetGoal method for the agent where the goal is to
be set. The code below demonstrates how we can do this for our agent, John:

John.SetGoal(g, 1);

We specify two items when calling this method: the goal that is to be set and its
“activation level”. This will “set” (or add) the goal in the goal structure. To
“deactivate” (or remove) the goal from the goal structure we will call the
ResetGoal method. In the Clarion theory, the term “reset” is equivalent to “remove”
as it relates to the goal structure (as well as Working Memory). The following code
demonstrates how we can manually reset (i.e., deactivate or remove) the goal in the
goal structure:

John.ResetGoal(g);

 3

These two simple methods provide you with all of the power you need to be able to
use goals within the Clarion Library. However, manually setting the goals is only one
of two ways to work with goals, and will often not be enough for more advanced
simulations. The Clarion theory provides many more details regarding various
additional methods for setting goals. For example, we can use “goal actions” in the
ACS or in the MCS to perform operations on the goal structure. In the following
section, we will look at how goals can be set using “goal actions” in the ACS.

Using Action Chunks

To begin, while the Clarion theory refers to actions that affect the goal structure as
being “goal actions”, the implementation uses a clearer term for describing these
sorts of actions. In other words, in the Clarion Library, actions that perform updates
on the goal structure are defined using the GoalStructureUpdateActionChunk
class. The contents of these action chunks contain information about the sorts of
updates that are to be performed. For example, suppose we want an action that
“sets” the goal g in the goal structure. The following code sets up such an action:

GoalStructureUpdateActionChunk gAct = World.NewGoalStructureUpdateActionChunk();

gAct.Add(GoalStructure.RecognizedActions.SET, g);

Note that we specify, as the first parameter in our Add method, an enumerator
called RecognizedActions. Several classes within the Clarion Library (namely
those mechanism that can be manipulated using actions, e.g., the
NonActionCeneteredSubsystem, the GoalStructure, WorkingMemory, etc.)
define a RecognizedActions enumerator. This enumerator provides the list of
commands that an action can perform on an instance of that class. The
GoalStructure recognizes four types of actions:

 SET. “Adds” the goal to the goal structure

 RESET. “Removes” the goal from the goal structure

 RESET_ALL. “Removes” ALL of the goals from the goal structure

 SET_RESET. Combines the RESET_ALL and SET actions

If we want a component in the ACS to use this action, all we have to do is specify it in
the output layer of the component. Below is an example of how we would set up this
action in a network on the bottom level of the ACS.

... //Elided code performing additional initialization for the network

net.Output.Add(gAct);

Now, whenever the ACS selects this GoalStructureUpdateActionChunk, the
system will perform the commands specified by that action. We will discuss another
variation of this method (i.e., using a meta-cognitive module) in a later tutorial.

 4

At this point you should have a basic foundation for building simulations in the
Clarion Library using the goal structure. When you are ready to move on to the
more complicated aspects of the MS (including integrating the MS with the MCS), the
next tutorial, “Intermediate MS & MCS Setup”, can be found in the “Intermediate
Tutorials” section of the “Tutorials” folder.

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Intermediate MS & MCS Setup

© 2013. Nicholas Wilson

Table of Contents

Setting Up and Using Drives and Meta-Cognitive Modules .. 1
Initializing a Drive .. 1

The Drive Equation.. 3
Stimulating a Drive .. 4

Accessing Agent Meta Info.. 5
Initializing a Meta-Cognitive Module ... 6

The Goal Selection Equation .. 7
Correlating Drives and Meta-Cognitive Modules .. 8
Meta-Cognitive Module Integration ... 9

Setting Up and Using Drives and Meta-Cognitive Modules

Drives use factors from both the internal and external state information (located
within the SensoryInformation object) to transform them into a “drive strength”
(i.e., the amount of activation for a drive). However, without mechanisms to process
these drive strengths and make decisions based upon them, the drives alone will
have little effect on the overall operation of an agent. Therefore, we rely on meta-
cognitive modules to make decisions based upon these drives strengths (as well as
other factors) and to initiate a variety of internally-directed meta-cognitive actions.

It is because of the tight coupling between drives and meta-cognitive modules that
we have chosen to present these concepts together. We begin by demonstrating how
to set up and initialize a drive in the bottom level of the motivational subsystem.
Afterwards, we present an example of a meta-cognitive module that will combine
the drive strengths from various drives and then use that information to update the
goal structure using a GoalStructureUpdateActionChunk. But first let’s begin by
describing how to initialize a drive.

Initializing a Drive

To start, we should note that a drive object is considered to be a “special form” of a
functional object within the Clarion Library. We say this because the drive object
doesn’t directly extend from the base ClarionComponent class but is essentially
just a wrapper around an ImplicitComponent that provide a few additional drive-
specific features.

 2

The Clarion Library comes equipped with all of the primary drives specified in the
technical specification document. Each of these drives is defined by their own class
and use the following naming convention:

PrimaryDriveNameDrive

For example, the class names for the food drive and dominance and power drive are
“FoodDrive” and “DominancePowerDrive”1 respectively. These drives are
initialized using the InitializeDrive method in the AgentInitializer class.
For example, the following code will initialize a FoodDrive in our agent, John:

FoodDrive food = AgentInitializer.InitializeDrive(John, FoodDrive.Factory, .5);

Drives are designated as being one of the following groups within the bottom level
of the MS:

 Approach drives (i.e., BAS drives)

 Avoidance drives (i.e., BIS drives)

 “Both” drives (i.e., both approach and avoidance oriented)

 “Unspecified” drive types (i.e., they either don’t belong to a behavioral
system, or their behavioral system has not been specified)2

In general, you shouldn’t need to access this group specification in order to use a
drive. All of the “built-in” drives in the Clarion Library (based on the Clarion theory)
specify their appropriate group during initialization. However, if you want to change
the group affiliation of a built-in drive, you can specify it as an optional parameter
during initialization. Below is an example of what this might look like if we were to
change the group specification for the FoodDrive in our agent, John:

FoodDrive foodDrive = AgentInitializer.InitializeDrive
 (John, FoodDrive.Factory, .5,
 MotivationalSubsystem.DriveGroupSpecifications.BOTH);

Additional, you may also want to create your own “deficit change processor” to
process how the deficits change over time.3 This is accomplished using “custom
delegates”, however implementing something like this is a more advanced concept
outside of the scope of this guide. 4

1 For those drives that contain the “&” symbol in their name, the “&” conjunction has been left out of
the class name for those drives.
2 The specification of the drive’s behavior system can be found in the documentation for the drive’s
class as well in an instance of a class (via the BehaviorSystem property).
3 By default, drive deficits change by a multiplicative factor of the DEFICIT_CHANGE_RATE (located
in the local parameters class instance of the drive).
4 Details on how to implement a “custom delegate” can be found in the “Basic Customization” tutorial
in the “Customizations” section.

 3

The Drive Equation

Recall that we mentioned earlier that a drive is just a “wrapper” for an
ImplicitComponent, so the next thing we need to do is initialize an
ImplicitComponent inside of the FoodDrive. Ideally, you will want to use
something like a pre-trained BPNetwork in your drive. However, since pre-training
an implicit component can get a bit complicated, for our current example we will
demonstrate a quicker and easier component, the DriveEquation, instead.5

The DriveEquation is an extension of the Clarion theory.6 In general, you should
usually only use it when you are testing the configuration of your agents. Once an
agent is properly configured, you should replace it with a more “distributed” type of
implicit component (such as a BPNetwork). The following code demonstrates how
to set up a DriveEquation within the FoodDrive of our agent, John:

DriveEquation foodEq =
 AgentInitializer.InitializeDriveComponent(foodDrive, DriveEquation.Factory);

We initialize the equation by calling the InitializeDriveComponent method
located in the AgentInitializer. Note that the DriveEquation class uses the
following equation for calculating the drive strength of a drive:

The details regarding this equation can be found in addendum #1 of the Clarion
Technical Specification (located on Ron Sun’s website). What is of particular
importance here is the series of variables defined by the equation.

We refer to these variables as “typical drive inputs.” They can be found within
variables located in either the “parameters class” for the drives (e.g.,
UNIVERSAL_GAIN7, DRIVE_GAIN, or BASELINE) or in the “parameters class” for the
motivational subsystem (e.g., SYSTEM_GAIN).

Generating dimension-value pairs to represent these “typical inputs” can be readily
generated by calling the GenerateTypicalInputs method, which is statically
available in the Drive class. Furthermore, if the ImplicitComponent within a
drive contains any of these “typical inputs”, the system will automatically fill them in
with the values appropriate for those inputs.

When an instance of DriveEquation is initialized using the AgentInitializer,
the following will already be configured for you in the DriveEquation instance that
gets returned:

5 The Clarion Library comes equipped with a feature (the ImplicitComponentInitializer) that
can aid with the initialization and pre-training of implicit components. The details on how to use it
can be found in the “Useful Features” tutorial located in the “Features & Plugins” section.
6 Located in the Clarion.Framework.Extensions namespace.
7 UNIVERSAL_GAIN is a static parameter (in the DriveParameters class) and therefore always
applies to all drives regardless of the subclass from which it is changed.

http://www.cogsci.rpi.edu/~rsun/clarion-pub.html

 4

1. The inputs to the DriveEquation (populated with the dimension-value
pairs representing the “typical inputs” for the equation

 Note that the dimension ID will be set to the Type of the drive in which
the equation is being initialized and the value IDs will be of the
enumerated type Drive.MetaInfoReservations.

 Note also that these inputs are generated by statically calling the
Drive.GenerateTypicalInputs method.

2. The output from the DriveEquation (specified as a dimension-value pair
representing the “drive strength” for that drive.

 Note that the dimension ID will be set to the Type of the drive in which
the equation is being initialized and the value ID will be the
DRIVE_STRENGTH specification from the enumerated type Drive.
MetaInfoReservations.

 Note also that this output is generated by statically calling the
Drive.GenerateTypicalOutput method

This pre-loading behavior of the input layer (as was described in #1, above) is
unique to DriveEquation. However, the pre-loading of the output layer is not. The
Clarion Library requires that, for those implicit components that are being used
within a drive, the output layer of those components MUST contain the
“DRIVE_STRENGTH” dimension-value pair (as was described in #2, above) and can
ONLY contain that dimension-value pair. If you attempt to put a different
dimension-value pair in the output layer, the ImplicitComponent will fail when
you try to commit it to the drive. As a result of this requirement, the
InitializeDriveComponent method will automatically populate the output layer
of the ImplicitComponent it generates with the appropriate “DRIVE_STRENGTH”
dimension-value pair for the drive in which the ImplicitComponent is initialized.

Finally, as is always the case, once you have finished initializing the drive’s
ImplicitComponent, you must commit that component to the drive. In addition,
you will also then need to commit the drive itself to the agent. The following code
demonstrates how this is done for the FoodDrive of our agent, John:

foodDrive.Commit(foodEq);
John.Commit(foodDrive);

Stimulating a Drive

If you use only the “typical inputs,” then you will only need to specify the activation
of the STIMULUS input. The following code demonstrates how you might specify the
STIMULUS for the FoodDrive in a sensory information object (generated during the
running of a task) for our agent, John:

si = World.NewSensoryInformation(John);

 5

si[FoodDrive.MetaInfoReservations.STIMULUS, typeof(FoodDrive).Name] = 1;

... //Elided initialization of other aspects of the sensory information

John.Perceive(si);

... //Elided code for running the rest of the task

Note that you are not required to use the “typical inputs” for your drives. However,
if you don’t use them, you will then have to specify the activations for the inputs of
your drives during the running of the task every time you create a new sensory
information object.

Accessing Agent Meta Info

As you may have noticed from the previous code segment, we do not need to “add”
the STIMULUS variable to the sensory information object. This is because the
NewSensoryInformation method automatically populates the sensory
information object with all of the agent’s “meta information” (which includes the
drive inputs and outputs, among other things) before it is returned to the simulating
environment. Instead of “adding” the internal meta information, we can simply
access it from the sensory information object (as was demonstrated in the above
code).

The value for any agent “meta information” (such as drive inputs and outputs) will
usually be the string name of the class from which the meta information was
specified. For example, the stimulus for the food drive could have also been set using
the following:

si[FoodDrive.MetaInfoReservations.STIMULUS, "FoodDrive"] = 1;

The dimensions for the “meta information” are usually specified by an enumerator
called MetaInfoReservations. This convention for defining meta-information
dimension-value pairs is intuitive (and also correct with regard to proper
representation within Clarion). It is also a very useful organization. For example, it
is very easy to figure out what objects are declaring what information. For example,
the STIMULUS dimension in the above sensory information object will contain
specifications for all of the drives that are set up to use this typical input.

It can sometimes be a little tricky trying to figure out what meta information is
available for a given agent. The best thing to do here while building the “run”
portion of your simulation is to start by simply getting a sensory information object
from the World and writing it out to the console (or set a breakpoint on your
debugger for immediately after the new sensory information call). This should give
you an idea of what meta info is being specified by an agent. Below is an example

 6

(from the “Full Hello World” simulation sample8) of what a sensory information
object, which contains meta information, might look like:

Activations:
 (Dimension = BASELINE, Value = AffiliationBelongingnessDrive), Activation = 0,
 (Dimension = BASELINE, Value = AutonomyDrive), Activation = 0,
 (Dimension = BOTH, Value = MotivationalSubsystem), Activation = 0,
 (Dimension = DEFICIT, Value = AffiliationBelongingnessDrive), Activation = 0,
 (Dimension = DEFICIT, Value = AutonomyDrive), Activation = 0,
 (Dimension = DRIVE_GAIN, Value = AffiliationBelongingnessDrive), Activation = 0,
 (Dimension = DRIVE_GAIN, Value = AutonomyDrive), Activation = 0,
 (Dimension = DRIVE_STRENGTH, Value = AffiliationBelongingnessDrive), Activation = 0,
 (Dimension = DRIVE_STRENGTH, Value = AutonomyDrive), Activation = 0,
 (Dimension = STIMULUS, Value = AffiliationBelongingnessDrive), Activation = 0,
 (Dimension = STIMULUS, Value = AutonomyDrive), Activation = 0,
 (Dimension = UNIVERSAL_GAIN, Value = Drive), Activation = 0

Note that the activations all meta information will be 0 when the sensory
information is first returned by the World. This is because meta information is
usually set internally. We set the drive STIMULUS value within the simulating
environment simply as a matter of convenience. However, ideally, we would prefer
that such operations be performed internally by a meta-cognitive module whose job
it is to determine drive stimulus signals.9

At this point, you should now have everything you need in order to set up drives in
the bottom level of the MS. However, in order to use these drives, you also need to
implement one or more meta-cognitive module(s) that will act based on these
drives. So let’s turn to discussing how to initialize meta-cognitive modules, after
which we will demonstrate how to integrate the drives with them.

Initializing a Meta-Cognitive Module

Operationally, a meta-cognitive module acts essentially like a “mini-ACS,” except
that the actions of a meta-cognitive module is directed towards manipulating the
internal aspects of an agent (such as the goals in the goal structure, certain
parameters within other subsystems, etc.). A meta-cognitive module can be
comprised of any combination of ImplicitComponent instances in the bottom-
level and RefineableActionRule instances in the top level. However, unlike the
ACS, meta-cognitive modules are more limited in their capabilities. For example, a
meta-cognitive module does not use FixedRule instances in the top level and the
action recommendations from the top and bottom levels are always combined.

In general, you should mainly set up a meta-cognitive module using the bottom
level. This makes sense conceptually, since meta-cognitive processes tend to be sub-
conscious. This being said, rule extraction and refinement is enabled by default
within the modules. Note, however, that no mechanism is provided for delivering
the specialized feedback that would be needed in order to take advantage of RER

8 Located in the “Intermediate” section of the “Samples” folder

 7

within these modules. In fact, in order to leverage the RER capabilities in the MCS,
we would need to develop a meta-cognitive module that could interpret both
internal and external factors and then deliver the reinforcement signal to the other
modules in the MCS.9

The process for setting-up a meta-cognitive module is similar to initializing a drive.
For this tutorial, we will look at a commonly used module: the
GoalSelectionModule. Below is an example of how you would initialize this
module within the agent, John:

GoalSelectionModule gsm =
 AgentInitializer.InitializeMetaCognitiveModule
 (John, GoalSelectionModule.Factory);

After we have initialized the module, we can start populating it with implicit
components and rules. You can initialize these components by calling either the
InitializeMetaCognitiveDecisionNetwork or the
InitializeMetaCognitiveActionRule methods located within the
AgentInitializer. Below is an example of how we could initialize a
GoalSelectionEquation10 within the bottom level of the
GoalSelectionModule:

GoalSelectionEquation gse =
 AgentInitializer.InitializeMetaCognitiveDecisionNetwork
 (gsm, GoalSelectionEquation.Factory);

The input layer for the implicit components (and conditions of any rules for that
matter) of a meta-cognitive module can consist of any type of (descriptive)
IWorldObject (just like in the ACS). However, they can also make use of several
other types of inputs that you wouldn’t normally use in the ACS. Specifically, meta-
cognitive modules will often specify “DRIVE_STRENGTH” dimension-value pairs
(from the previous section) as part of the input layer of their implicit components.

The Goal Selection Equation

Remember that the bottom level of the MS is in charge of determining drive
strengths based on the combination of stimulus from the sensory information as
well as certain “individual differences” considerations (i.e., gains, deficit, etc.). For
example, the GoalSelectionEquation combines the drive strengths (and any
other descriptive world object) to make goal recommendations for the goal
structure based on the following equation:

9 This capability, while within the scope of the Clarion theory, is currently only conceptual. However,
future research into this concept may eventually lead to the implementation of such a module.

10 Like the DriveEquation, the GoalSettingEquation is an extension component and can be
found in the Clarion.Framework.Extensions namespace.

 8

 ∑

 ∑

Let’s break down this equation to better understand how to set up the
GoalSelectionEquation within your code. The first half of the equation relates
specifically to the drive strengths. This part of the equation sums together the drive
strengths for all of the drives. In addition, a weighting factor is applied to each drive
strength. This weighting factor specifies the “relevance” that each drive has to the
goal whose “goal strength” is being calculated. The second half of the equation is
essentially the same as the first half, except that it applies the process to the other
descriptive world objects (e.g., dimension-value pairs, chunks, etc.) that are
“relevant” to the goal. The goal strength of each goal, which is the output of this
equation, indicates the “value” for setting a goal within the goal structure.

Correlating Drives and Meta-Cognitive Modules

The input layer of the GoalSelectionEquation can contain any number of “drive
strength dimension-value pairs” or other relevant descriptive world objects. The
output layer can ONLY contain goal structure update action chunks. Recall that in
the previous tutorial we demonstrated how a GoalStructureUpdateActionChunk
could be used to set (or remove) goals within the GoalStructure.11 The
GoalStructureUpdateActionChunk is what enables the GoalSelectionModule
to update the GoalStructure.

Once the GoalSelectionEquation is set up within the GoalSelectionModule, it
gets used to calculate the goal strengths, which the GoalSelectionModule then
uses to select a GoalStructureUpdateActionChunk. The goal associated with that
action chunk is set (or removed) in the GoalStructure by initiating a goal
structure update event within the system. That event will prompt the MS, which will
perform the update based on what is specified by the action.

At this point, let’s step through an example to demonstrate the process of setting up
the GoalSelectionModule. This example correlates the FoodDrive to a
GoalStructureUpdateActionChunk that “resets” the goal structure and then
“sets” a goal, g, in the goal structure of our agent, John. The first line of our example
is as follows:

gse.Input.Add(foodDrive.GetDriveStrength());

This line adds the “drive strength dimension-value pair” of the FoodDrive to the
input layer of the GoalSelectionEquation that we initialized earlier. The next
three lines initialize the GoalStructureUpdateActionChunk that “sets” goal g in
the goal structure and add it to the output layer of the GoalSelectionEquation:

GoalStructureUpdateActionChunk gAct = World.NewGoalStructureUpdateActionChunk();

11 See the “Setting Up & Using the Goal Structure” tutorial located in the “Basics Tutorials” section of
the “Tutorials” folder.

 9

gAct.Add(GoalStructure.RecognizedActions.SET_RESET, g);

gse.Output.Add(gAct);

After the input and output layers have been set up we need to specify the relevance
that each input has to each output. This is done using the following convention for
each of the input output relevance pairings:

SomeGoalSelectionModule.SetRelevance(SomeGoalStructureUpdateActionChunk,
 SomeDrive or SomeWorldObject, SomeRelevanceValue);

To correlate the FoodDrive to the GoalStructureUpdateActionChunk for our
example the code will look something like this:

gsm.SetRelevance(gAct, foodDrive, 1);

Finally, as was the case with initializing a drive, once we are finished setting up a
component for our meta-cognitive module, we need to commit it to the module.
Additionally, after the module has been completely initialized, we have to commit it
to the agent. The code below shows how this would be done in our current example:

gsm.Commit(gse);

John.Commit(gsm);

Meta-Cognitive Module Integration

Once all of the components and modules have been committed, the system will
automatically integrate them into the internal processes of the agent. No other
interventions are required to make the modules interact correctly with the other
parts of the system. In general, when a meta-cognitive module has been set up and
committed to an agent, it will operate “behind-the-scenes.” However, if you would
like to view the inner workings or outcomes from either the motivational subsystem
or the meta-cognitive modules, several features are available in the Clarion Library
to accomplish this.

For instance, the results from either updating the drive strengths in the MS or
choosing meta-cognitive actions in the MCS will be viewable as part of the
SensoryInformation that was perceived by the agent AFTER the agent is finished
choosing an external action based upon it. Below is an example (from the “Full Hello
World” simulation sample12) of what this might look like:

Activations:
 (Dimension = BASELINE, Value = AffiliationBelongingnessDrive), Activation = 0,
 (Dimension = BASELINE, Value = AutonomyDrive), Activation = 0,
 (Dimension = BOTH, Value = MotivationalSubsystem), Activation = 0,
 (Dimension = DEFICIT, Value = AffiliationBelongingnessDrive), Activation = 0.41,

12 Located in the “Intermediate” section of the “Samples” folder

 10

 (Dimension = DEFICIT, Value = AutonomyDrive), Activation = 0.57,
 (Dimension = DRIVE_GAIN, Value = AffiliationBelongingnessDrive), Activation = 1,
 (Dimension = DRIVE_GAIN, Value = AutonomyDrive), Activation = 1,
 (Dimension = DRIVE_STRENGTH, Value = AffiliationBelongingnessDrive), Activation = 0.41,
 (Dimension = DRIVE_STRENGTH, Value = AutonomyDrive), Activation = 0.57,
 (Dimension = GoalChunk:Salute, Value = Salute), Activation = 1,
 (Dimension = Salutation, Value = Goodbye), Activation = 0,
 (Dimension = Salutation, Value = Hello), Activation = 1,
 (Dimension = STIMULUS, Value = AffiliationBelongingnessDrive), Activation = 1,
 (Dimension = STIMULUS, Value = AutonomyDrive), Activation = 1,
 (Dimension = UNIVERSAL_GAIN, Value = Drive), Activation = 0

You can also turn on logging, which, depending on the level, will provide you with
additional details concerning the internal operations of the system (including the
motivational subsystem and meta-cognitive modules). The details concerning how
to use the logging feature can be found in the “Using Features” tutorial (located in
the “Features & Plugins” section of the “Tutorials” folder).

This concludes the tutorial for setting up drive and meta-cognitive modules. At this
point, you should have the necessary foundation for using these aspects of the
Clarion theory. Note, however, that the example we demonstrated herein was fairly
easy, however, setting up the MS and MCS can actually become quite complex. If you
find that you need additional information on setting up a particular meta-cognitive
module, please consult the API resource document (located in the “Documentation”
folder). It will provide you with additional details for how to use any of the “pre-
packaged” modules that come with the Clarion Library.

Furthermore, we suggest consulting the “Advanced Customization” tutorial (located
in the “Customizations” section of the “Tutorials” folder). This tutorial provides
details on how to create a custom drive (as well as other types of custom
components). Additionally, while it is not included as part of the Clarion Library
package, a guide on how to create a custom meta-cognitive module is available upon
request. However, be forewarned that implementing a custom meta-cognitive
module is a VERY advanced (i.e., developer level) undertaking. Therefore, before
endeavoring to undertake any developer level (or even advanced level)
customizations, you will need to have a thorough and complete understanding of the
Clarion theory as well as extensive experience working with the Clarion Library.

Remember, as always, if you run into any problems, have additional questions, want
to report a bug, or wish to request the tutorial on implementing a custom meta-
cognitive module, you can contact us at clarion.support@gmail.com or post on our
message boards at http://www.clarioncognitivearchitecture.com.

mailto:clarion.support@gmail.com
http://www.clarioncognitivearchitecture.com/

 1

Basic Customization

© 2013. Nicholas Wilson

Table of Contents

Customized Methods (Using Delegates) ... 1
Specifying Delegates as Parameters during Initialization ... 2
Creating Custom Rules .. 3

Using the SupportCalculator Delegate to Set Up an IRL Rule ... 3
Initializing the IRL Rule ... 5
Using the SupportCalculator Delegate to Set Up a Fixed Rule ... 5

A Note on the Generically Typed DimensionValuePair<DType,VType> Class 7
Initializing the Fixed Rule ... 8

Generic Equations .. 9

Customized Methods (Using Delegates)

For several of the algorithms specified by the Clarion theory (e.g., eligibility
checking, rule refinement, match calculating, etc.), the library only implements the
default method, even though there may be other ways to perform those operations.
This being said, you may run into instances where you will need to designate a
different operation to replace the system’s default behavior for a certain algorithm.
To address this need, the Clarion Library leverages C#’s delegate feature and defines
a series of “delegate signatures” that can be used to define your own custom
algorithms. Whenever a custom method is specified during initialization, the system
will use this method in lieu of its default behavior.

So let’s begin our tutorial on setting up and using delegates by looking at one of the
algorithms that you are most likely to want to customize: checking the eligibility of a
component. For customizing this method, the Clarion Library defines the
EligibilityChecker delegate. The signature for this delegate is:

public delegate bool EligibilityChecker
 (ActivationCollection currentInput = null, ClarionComponent target = null);

The default eligibility checking algorithm for an ImplicitComponent is simply to
return the value of the component’s “ELIGIBILITY” parameter. While this provides
a simple way for you to manually prevent or allow a component to be used by the
system, it does not, otherwise, provide any additional logic for determining the
eligibility. For example, suppose you wanted to define some conditions for when a
component should be used and you want the system to be able to integrate this
“condition eligibility check”. To accomplish this, you need to implement a method

http://msdn.microsoft.com/en-us/library/ms173171%28v=VS.100%29.aspx

 2

that will perform the eligibility checking operation and then inform the system of
the result of this check.

Implementing a custom eligibility checking delegate is accomplished by creating a
method within your code that uses the same inputs and returns a value of the same
type as is specified by the “delegate signature” (from above). The following pseudo-
code demonstrates how such a method might look:

public bool Custom_EligibilityCheck (ActivationCollection currentInput = null,
 ClarionComponent target = null)
{
 ... // Do operations to determine if the target component is eligible
 return true or false;
}

After the method is set up, if we wanted a particular component to make use of it
when checking its eligibility, we would need to specify the method as a parameter
(in the form of an EligibilityChecker delegate) during the initialization of that
component. The system will use our custom delegate method to check the eligibility
of any components with which it was initialized.

Specifying Delegates as Parameters during Initialization

For the most part, we specify delegate methods during the initialization (using the
AgentInitializer) of an internal (functional) object. For example, suppose we
created a method called Custom_EligibilityCheck (in our own code) that
matches the signature for the EligibilityChecker delegate. The following code
demonstrates how our custom method could be specified as part of the initialization
of a BPNetwork in the bottom level of the ACS of the agent, John:

BPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, BPNetwork.Factory, (EligibilityChecker)Custom_EligibilityCheck);

Note that we have explicitly casted our custom method to the correct delegate
specification (i.e., EligibilityChecker) during the initialization call. We do this
because it is required in order to pass a delegate using the dynamic type
designation. This being said, there are other ways to specify the type of our delegate
method. Specifically, we can “wrap” our delegate method in a property and use that
property instead of explicitly casting our custom method. From the previous
example, initializing the BPNetwork can alternatively be done as follows:

// During the initialization method:
BPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, BPNetwork.Factory, CustomEligibilityCheckerDelegate);
... // At some other point in your code:
public EligibilityChecker CustomEligibilityCheckerDelegate
{
 get
 { return Custom_EligibilityCheck; }
}

 3

You can use whichever method you’d prefer, however, we recommend using the
property method as it is generally cleaner and easier to follow.

Specifying custom delegate methods during the initialization of an internal object is
usually optional. To find out which delegates an internal (functional) object can use,
consult the API resource document (in the “Documentation” folder) for the factory
class that is used to generate that internal object.

At this point, we should point out that while custom delegates are mainly optional,
there some internal (functional) objects that do actually require you to implement
some custom delegates in order to be initialized.1 In the following section, we will
look at two such internal objects: IRL rules, and fixed rules.

Creating Custom Rules

Depending on the specifics of the task you are simulating, you may discover that you
need to implement a rule whose dynamics are more complex than what can be
captured using a simple RefineableActionRule. To handle this case, the Clarion
theory defines two types of rules: IRL rules, and fixed rules.2

In the Clarion Library, we have implemented these rule types using two classes: the
IRLRule class, and the FixedRule class. These classes provide the large majority of
the mechanisms that are required for the rules. All you need to do is specify a single
custom delegate method in order to initialize either an IRL rule or a fixed rule. More
specifically, you need to define the method that is used for calculating the support
for the rule (via the SupportCalculator delegate). The system uses this support
measure to determine if a rule is eligible for action recommendation at a given time
step (based on a “partial match threshold”3). The signature for the
SupportCalculator delegate is as follows:

public delegate double SupportCalculator
 (ActivationCollection currentInput, Rule target = null);

To help clarify this concept further, let’s look at a few examples where we may want
to use each of these rule types.

Using the SupportCalculator Delegate to Set Up an IRL Rule

In this section we will cover an example of where an IRLRule would be necessary.
One of the most common instances when this rule type is necessary is when a
certain factor of a rule’s condition is, itself, conditioned upon another factor of that
condition. For example, let’s assume that we have the dimension-value pairs: {dim1,
a}, {dim1, b}, {dim2, c}, and {dim2, d} and the action: {do_something}. Now,
suppose we want to create the following rule:

1 Again, consult the API resource document of the factory class for this information
2 See Sun (2003) for more details
3 Captured by the PARTIAL_MATCH_THRESHOLD parameter

 4

If {dim1, a} AND {dim2, c}, but NOT {dim2, d} then recommend the {do_something}
action, otherwise don’t recommend it

To capture the condition of this rule, we will need to write a custom method that can
be initialized using the SupportCalculator delegate signature. Using pseudo-
code, we could express this method as follows:

public double CalculateSupport_IRL(ActivationCollection currentInput, Rule r)
{
 return the maximum activation between {dim1, a} and {dim2, c} if both
 {dim1, a} and {dim2, c} are specified as being part of the condition
 while {dim2, d} is both specified as NOT being part of the condition
 and is NOT activated in currentInput. Otherwise, 0
}

Note that the IRLRule class derives from the RefineableActionRule<> class, so
it has all of the same refinement capabilities as that rule type. Therefore, we can use
the Clarion Library’s built-in generalization and specialization processes to
automatically refine our IRLRule without needing any additional customizations be
set up to facilitate it. For instance, suppose that the system decided that the
following refined rule is better able to capture the dynamics of our current task
example:

 If {dim1, a} OR {dim1, b} AND {dim2, c}, but NOT {dim2, d} then recommend the
{do_something} action, otherwise don’t recommend it

We want to make sure, when constructing custom delegate methods, that we
capture the most essential factors for your rule while still maintaining enough
flexibility to accommodate any refinements that may be made to the rule. For our
current example, the main factors are the co-activation of any dimension-value pair
in dim1 and the {dim2, c} dimension-value pair, but NOT the activation of the
{dim2, d} dimension-value pair. Therefore, our support calculator method should
capture these factors. Below is an example of how we might express this in C#:

public double CalculateSupport_IRL(ActivationCollection currentInput, Rule r)
{
 var d1 = from d in currentInput
 where d.WORLD_OBJECT.AsDimensionValuePair.Dimension == "dim1" &&
 r.GeneralizedCondition[d.WORLD_OBJECT] == true
 select d;

 return (r.GeneralizedCondition["dim2","c"] == true &&
 currentInput["dim2", "c"] > 0 &&
 r.GeneralizedCondition["dim2", "d"] == false &&
 currentInput ["dim2", "d"] == 0)? d1.Max(e => e.ACTIVATION) : 0;
}

To fully understand the above code, you need to be aware of the C# language
features that it is leveraging. The first line uses LINQ to get all of the dimension-
value pairs in dim1 that are specified as being part of the condition. The second line

http://msdn.microsoft.com/en-us/netframework/aa904594

 5

(i.e., the return line) uses a combination of lambda expressions and the conditional
operator to return the maximum activation (which captures the OR operation) of
the dimension-value pairs that were found in the first line if the dimension-value
pair {dim2, c} is activated and {dim2, d} is not. Alternatively, if the condition is
not true (i.e., either {dim2, c} is not activated or {dim2, d} is), then the second
line will return zero.

Now that we have setup our custom method, let’s look at how we would go about
initializing the IRLRule.

Initializing the IRL Rule

To setup the IRLRule we need to do three things. First, we need to initialize it:

// During the initialization method:
IRLRule rule1 = AgentInitializer.InitializeActionRule
 (John, IRLRule.Factory, some_action, SupportDelegate);

DimensionValuePair dv1 = World.NewDimensionValuePair(“dim1”, “a”);
DimensionValuePair dv2 = World.NewDimensionValuePair(“dim1”, “b”);
DimensionValuePair dv3 = World.NewDimensionValuePair(“dim2”, “c”);
DimensionValuePair dv4 = World.NewDimensionValuePair(“dim2”, “d”);

... // At some other point in your code:
public SupportCalculator SupportDelegate
{
 get
 { return CalculateSupport_IRL; }
}

Second, we need to setup the initial condition for the rule:

// Elided rule initialization (see above)

rule1.GeneralizedCondition.Add(dv1, true);
rule1.GeneralizedCondition.Add(dv2, false);
rule1.GeneralizedCondition.Add(dv3, true);
rule1.GeneralizedCondition.Add(dv4, false);

Finally, we need to commit the rule:

John.Commit(rule);

That is everything you need to do to setup an IRLRule. So let’s turn our attention
now to an example of how to setup a FixedRule.

Using the SupportCalculator Delegate to Set Up a Fixed Rule

The process for setting up a FixedRule is very similar to setting up an IRLRule. A
good example of where we might want to use a FixedRule is when part of the
algorithm for determining the support of a rule requires that we perform some sort
of mathematical translation on parts of the SensoryInformation. For instance,

http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/ty67wk28%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/ty67wk28%28v=VS.100%29.aspx

 6

let’s suppose we want to setup the following rule, which determines whether a
“carry-over” operation is needed when performing addition:

If {operator, +} and {digit1, x} + {digit2, y} > 9, then recommend the {carry-
over} action, otherwise don’t recommend it.

We capture the condition of this rule within our custom delegate method. The
following cod demonstrates how we would do this in pseudo-code:

public double CalculateSupport_FR(ActivationCollection currentInput, Rule r)
{
 return 1, if {operator, +} is activated and {digit1, x} + {digit2, y} > 9
 Otherwise, 0
}

While it is a little longer, expressing the pseudo-code in C# would look something
like this:

public double CalculateSuppot_FR(SensoryInformation currentInput, Rule r)
{
 if (currentInput["operator", "+"] > 0)
 {
 var d1 = (from d in currentInput
 where d.WORLD_OBJECT.AsDimensionValuePair.Dimension == "digit1"
 select d).OrderByDescending(e => e.ACTIVATION).First();

 var d2 = (from d in currentInput
 where d.WORLD_OBJECT.AsDimensionValuePair.Dimension == "digit2"
 select d).OrderByDescending(e => e.ACTIVATION).First();

 if (((int)d1.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) +
 ((int)d2.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) > 9)
 return 1;
 else return 0;
 }
 else
 return 0;
}

The LINQ queries (i.e., the first 2 lines inside of the first if statement) are used to
find the maximally activated digits (represented as dimension-value pairs). Note
that we assume, in this example, that only one digit will be activated for each
dimension, so getting the First value from the dimension (after it has been sorted
in descending order by activation) should give us digits x & y (from the pseudo-
code). The first if statement checks to see if the + operator is activated in the
SensoryInformation. The second if statement checks to see if the sum of the two
digits will require that the carry-over action be performed and will return 1 (i.e.,
the action should be recommended) if it does, or 0 (i.e., the action shouldn’t be
recommended) if it does not.

 7

A Note on the Generically Typed DimensionValuePair<DType,VType> Class

You may have noticed the following from the example we are using to demonstrate
how to set up a FixedRule:

Value.AsIComparable

Beginning with version 6.1.0.7 of the Clarion Library, dimension-value pairs actually
come in two flavors:

 The standard DimensionValuePair class

 A generically typed DimensionValuePair<DType,VType> subclass

Although this is the case, you likely have not realized it until this point, since the
vast majority of your interaction with the World class automatically gives you the
generically type DimensionValuePair<DType,VType>. This generically typed
DimensionValuePair<DType,VType> is very useful as it significantly simplifies
your interaction with dimension-value pairs by reducing the amount of explicit
casting that is necessary. For example, suppose we did the following:

World.NewDimensionValuePair("Digit", 1)

If we were to subsequently call the Dimension or Value properties of the
DimensionValuePair<DType,VType> object that is returned by that method, the
dimension or value that we will get back will already be cast as the appropriate type
(i.e., as a string or an int respectively). This is the case whenever working with
generically typed dimension-value pairs.

While this is certainly a very useful addition, the primary reason that we added the
generically type DimensionValuePair<DType,VType> class, was to enable values
of different types to inhabit the same dimension. This has been accomplished by
implementing a special “wrapper” class (called V) within the standard
DimensionValuePair class. This wrapper class has specially overloaded
IComparable methods that allow differently typed values to be compared using
their ToString() representations. While there are MANY benefits to implementing
this, the downside is that calling the Value property of the standard
DimensionValuePair (e.g., when using the AsDimensionValuePair property of
the IWorldObject interface) will actually return the V class “wrapper” instance as
opposed to the underlying IComparable value itself (which is what is returned by
the Value property of DimensionValuePair<DType,VType>).

We have gotten around this issue by defining a property, called AsIComparable,
within the V class that exposes the underlying IComparable value. Note, however,
that you will likely also have to explicitly cast this value back to its appropriate type
to make use of it.4 The following example (taken from the previous FixedRule

4 We acknowledge that this solution is “suboptimal”, however, unless (or until) Microsoft decides to
allow custom implicit casting to interfaces or (better yet) allows custom down casting in C#, this is
the best solution we could come up with.

 8

example) demonstrates how we might go about exposing (and explicitly casting) the
underlying IComparable value when working with the standard
DimensionValuePair class:

if (((int)d2.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) +
 ((int)d2.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) > 9)
 return 1;
else return 0;

Now that we have addressed this point, let’s look at how we might go about
initializing a FixedRule.

Initializing the Fixed Rule

Setting-up the FixedRule is essentially the same process as it was for the IRLRule:

// During the initialization method:
FixedRule rule = AgentInitializer.InitializeActionRule
 (John, FixedRule.Factory, carry_action, SupportDelegate);
John.Commit(rule);

... // At some other point in your code:
public SupportCalculator SupportDelegate
{
 get
 { return CalculateSupport_FR; }
}

Note that, since fixed rules are not refineable, we technically do not need to specify a
condition for them. We call these types of fixed rules “condition-less.” In addition, by
default, fixed rules are also not deletable (e.g., via density considerations5). In
general, you will want to use a fixed rule to capture the “one-shot-learning”
paradigm. That is, fixed rules are usually obtained in some sort of explicit fashion
(e.g., via instruction).

This concludes the basic customization tutorial. You should now have everything
you need to know in order to do basic customizations using delegates within the
Clarion Library. Feel free to explore the documentation to discover all of the places
throughout the system where custom delegate methods can be used. Using delegate
methods is a great way to customize your simulations without needing to “reinvent
the wheel”, so to speak.

However, if you find that you have reached the limit of what custom delegates can
provide or you feel like taking on a challenge, then you should know that you can
implement your own customized internal (functional) objects (e.g., implicit
components, drives, rules, etc.). Details on how to do this can be found in the
“Advanced Customization” tutorial. However, be forewarned that implementing a
custom internal (function) object is NOT a simple process. Therefore, you should
have a thorough understanding of the Clarion theory as well as significant

5 Although this can be enabled by toggling the DELETABLE_BY_DENSITY parameter

 9

experience working with the Clarion Library before endeavoring to take on this sort
of customization.

Generic Equations

It is not uncommon that, during the development and tuning of your task, you may
find it both quicker and more preferable to temporarily “shortcut” some of the more
laborious aspects of initialization (e.g., pre-training implicit components such as
neural networks) for the bottom level of an agent’s subsystems. Frequently, these
implicit components are simply expected to report the results of an already known
equation. For this sort of event, the Clarion Library provides GenericEquation6,
which can easily be setup and “plugged into” the bottom level anywhere within your
agent. Specifically, this component makes use of the Equation delegate in order
to allow you to easily create your own, custom equation. The signature for this
delegate is:

public delegate void Equation
 (ActivationCollection input, ActivationCollection output);

As was the case for the other basic customizations (discussed previously), to
implement a custom equation, all you need to do is define a method within your
own code that conforms to the above signature and the Clarion Library will then be
able to use that method to set the activations for the “nodes” on the output layer
(given the specified input).

For example, let’s suppose that we want to create a GenericEquation that can be
used to solve a simple linear equation (i.e.,). We can accomplish this using the
following method:

public void LinearEquation
 (ActivationCollection input, ActivationCollection output)
{
 output["Variable", "Y"] = input["Variable", "X"];
}

You should note that the GenericEquation class conforms to the library’s standard
convention of transforming/bounding activations between 0 and 1. However, you
can specify your own range for your equation by simply changing
Parameters.MIN_ACTIVATION and Parameters.MAX_ACTIVATION (found by
using the Parameters property in the GenericEquation class). By setting these
parameters, both the input and output that is passed to your delegate method will
be automatically transformed/bounded to between your specified range.

After we have created our delegate method, all we need to do in order to use it is
provide it as a parameter during the initialization of a GenericEquation. For
example, suppose we wanted to use the simple linear equation in the bottom level of
the ACS for our agent, John. This could be accomplished as follows:

6 Located in the Clarion.Framework.Extensions namespace

 10

GenericEquation eq = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, GenericEquation.Factory, (Equation)LinearEquation);

As a reminder, in order to complete the initialization of our GenericEquation, we
also need to define the inputs and outputs, as well as “commit” the component to the
agent. Taken together, the following code demonstrates how we might setup and
initialize the simple linear equation (with a range between ±10) in our agent, John:

public void InitializeAgent()
{
 DimensionValuePair x = World.NewDimensionValuePair("Variables", "X");
 DimensionValuePair y = World.NewDimensionValuePair("Variables", "Y");
 Agent John = World.NewAgent("John");
 ... //Elided additional agent initialization
 GenericEquation eq = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, GenericEquation.Factory, (Equation)LinearEquation);

 eq.Input.Add(x);
 eq.Output.Add(y);

 eq.Parameters.MIN_ACTIVATION = -10;
 eq.Parameters.MAX_ACTIVATION = 10;

 John.Commit(eq);
}
... //Elided code for running the task
public void LinearEquation
 (ActivationCollection input, ActivationCollection output)
{
 output["Variable", "Y"] = input["Variable", "X"];
}

Using the GenericEquation can save valuable time while in the debugging and
tweaking phases of developing your task. However, keep in mind that ultimately you
will want to replace these “shortcuts” with the actual pre-trained bottom level
constructs that are defined within the Clarion theory (e.g., a backpropagation neural
network, or BPNetwork). Note that, in order to help simplify these sorts of pre-
training processes, the Clarion Library provides a very useful tool, called the
ImplicitComponentInitializer7. Details on how to use the
ImplicitComponentInitializer can be found in the Useful Features tutorial
(located in the Features & Plugins section of the Tutorials folder).

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

7 Located in the main Clarion namespace

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Useful Features

© 2013. Nicholas Wilson

Table of Contents

Viewing an Agent’s “Internals”... 1

Logging (using Trace) ... 2

The Implicit Component Initializer .. 3
Pre-Training ... 4
Auto-Encoding ... 7
Populating the Input and Output Layers of an Implicit Component 9

Timing .. 10
Response Time ... 10
“Real-time” Mode ... 12

Asynchronous Operation .. 12

Viewing an Agent’s “Internals”

Reporting the outcome of a task usually involves at least some amount of
investigation into what, exactly, the agent learned. We can retrieve any of the
internal (functional) objects that are contained within an agent using the
GetInternals method located in the Agent class. For example, suppose your task
used bottom-up learning. In this case, we will likely want to know what rules were
learned. The code below demonstrates how we could access the rules in the action
rule store for our agent, John:

foreach (var i in John.GetInternals(Agent.Internals.ACTION_RULES))
 Console.WriteLine(i);

The GetInternals method takes, as its input, the InternalContainers
enumerator. This enumerator lists all of the functional internal objects that are
available for retrieval from within an Agent. This includes:

 Drives
 Action rules
 Implicit decision networks
 Associative rules
 Associative memory networks
 Associative episodic memory networks

 2

 Meta cognitive modules1

The previous example (above) iterated through the rules that were returned by the
GetInternals method and wrote them out to the console. Below is an example of a
possible output from that code2:

Condition:

 (Dimension = GoalChunk, Value = Salute), Setting = True

 (Dimension = GoalChunk, Value = Bid Farewell), Setting = True

 (Dimension = Salutation, Value = Hello), Setting = True

 (Dimension = Salutation, Value = Goodbye), Setting = False

Action:

 ExternalActionChunk Hello:

 DimensionValuePairs:

 (Dimension = SemanticLabel, Value = Hello)

The GetInternals method is not only useful for outputting the agent’s internal
(functional) objects. It also provides an easy way to retrieve these objects from an
agent for the sake of performing other tasks (such as pre-training or “offline”
training, parameter tuning, etc.).

While you will likely find this feature to be very useful, you will probably also find
that you want to know more about the inter-workings of the internal processes
being performed by your agent (for the sake of tracing or debugging your
simulation). The next section (below) covers the logging features of the Clarion
Library.

Logging (using Trace)

Often times, when in the process of building and tuning a simulation, you may find it
useful to view the internal processes of your agent(s). For example, by adjusting the
generalization and specialization thresholds, you can increase/decrease the rate at
which your agent performs either type of refinement. However, you obviously need
some way to determine these metrics in order to appropriately tune the parameters.

To address those situations where you may want to trace the internal processes of
the system, the Clarion Library provides several different levels of logging by
leveraging C#’s tracing mechanisms. By default, the logging level is set to “Off” (i.e.,
logging is not performed), however, you can specify a logging level by setting the

1 Meta-cognitive modules have the MetaCognitiveDecisionNetworks and
MetaCogntiiveActionRules properties that you can use to view the internal components for those
modules
2 The rule output was taken from a run of the “HelloWorld-Full.cs” simulation, which is located in the
“Beginner” folder under the “Samples” folder in the Clarion Library package

http://msdn.microsoft.com/en-us/library/system.diagnostics.trace.aspx

 3

LoggingLevel property located in the World singleton. The following code
demonstrates how this might be done:

World.LoggingLevel = TraceLevel.Warning;

//Elided additional initialization of the simulating environment and agent(s)

The Clarion Library uses the default tracing levels that are defined by the
TraceLevel enumerator3. Below is a breakdown of the kinds of things that are
logged by the system at the various trace levels:

 Off – No logging is performed

 Error – Only a few, “abnormal”, system behaviors are logged

 Warning – The system will “warn” you when certain, basic, events occur (e.g.,
the agent chooses an action, the goal structure or working memory are
updated, rules are added or deleted from the top level of the ACS, etc.)

 Info – Similar to the Warning level, except it provides more detailed
information. For example, it will inform you of when:

 Certain mechanisms (such as the drive strengths, goal structure, or
working memory updating threads) begin/end their processes

 The ACS (or MCS) determines that a rule should be
extracted/generalized/specialized/deleted

 Components are eligible and/or used during decision-making (in the
ACS or MCS)

 A certain rule/action type is targeted during decision-making

 Etc.

 Verbose – The most detailed logging level. The system will provide very
detailed information about all of the internal mechanisms within the system
(e.g., the state of all processes, i.e., threads; all events; anything specified by
the lower logging levels, etc.)

The Implicit Component Initializer

One of the most difficult parts of initializing a Clarion-based agent is the process of
setting up and pre-training implicit components such as neural networks. To
address this issue, the ImplicitComponentInitializer has been provided to
assist you with this process. The initializer can be used with any functional object
that extends from the ImplicitComponent class.

In the sections that follow, we will go over the various features that are at your
disposal when using the ImplicitComponentInitializer.

3 Located in the System.Diagnostics namespace

http://msdn.microsoft.com/en-us/library/system.diagnostics.tracelevel.aspx

 4

Pre-Training

When in the course of developing a task, you may occasionally find that you need to
“pre-ordain” your agent (or part of your agent) with a capability that is either not
appropriate for, or simply can not be learned using standard “online” learning
techniques (such as reinforcement learning). While this sort of “online” learning
may not be a necessary aspect of your task, you may still want the bottom level of
one or more subsystems to be “imbued” with some sort of proceduralized or
“automated” functionality (e.g., capabilities or knowledge that are the consequence
of an evolutionary process or the result of past experiences). For these types of
instances, the Clarion Library provides a very useful feature known as the
ImplicitComponentInitializer.

Before we begin, in order to pre-train an ImplicitComponent, we will first need
two things:

1. A target that is to be trained4

2. A trainer to provide the correct (or “desired”) output to the target

The trainer can really be any type of ImplicitComponent (e.g., an equation, a table
lookup, another previously trained ImplicitComponent, etc.). However, the one
thing you MUST be sure of is that it can provide the correct output(s) for all of the
training data sets that are being using to train the target.

Note that, by default, the Clarion Library provides several built-in “extension”
components5 that can very be easily be designated as trainers (i.e., without needing
any training themselves). The simplest of these extensions is the
GenericEquation6. In the demonstration that follows, this component will be used
in the role of trainer for a BPNetwork, that will act as the target. By using the Train
method of the ImplicitComponentInitializer, the target component will learn
how to report the value of a simple linear equation (i.e.,), as specified by the
GenericEquation.

To begin, we need to setup and initialize both our target and trainer. Let’s assume
that we want to use this target in the bottom level of the ACS. The steps needed in
order to accomplish this have already been discussed elsewhere7, so we will not go
into those details here. Instead, let’s move on to our trainer.

Initializing a trainer works slightly differently than the standard method for
initializing an agent’s internal functional objects. Specifically, trainer components
are not required to exists within an agent. You can, of course, use a component that
is within an agent if you so choose. However, as is more typically the case, you will
likely just want to initialize your trainer externally for the sole purpose of training
your target. To accomplish this, we use the InitializeTrainer method of the

4 The target component MUST implement the ITrainable interface
5 See the Clarion.Framework.Extensions namespace
6 See the Basic Customization tutorial (located in the Customizations section of the Tutorials folder)
for details about this component
7 See the Setting Up and Using the ACS tutorial (located in the Basics Tutorials section)

 5

ImplicitComponentInitializer. This method is essentially the same as the
Initialize methods in the AgentInitializer, except that it does not “tie” the
initialized component to an agent. The following code demonstrates how the
InitializeTrainer method might be used to initialize a GenericEquation:

GenericEquation eq = ImplicitComponentInitializer.InitializeTrainer
 (GenericEquation.Factory, (Equation)LinearEquation);

A few things should be noted at this point. First, to initialize a GenericEquation,
we must specify a delegate method (e.g., LinearEquation), which conforms to
the Equation signature. This method is used by the component in order to calculate
the activations for the “nodes” on the output layer.8 Second, an
ImplicitComponent, initialized using this method, can ONLY be used as a trainer.
In other words, it is not possible to later use this component as an internal
functional object within an agent. Third, like any component that is initialized using
the AgentInitializer, components initialized using the
ImplicitComponentInitializer MUST be “committed” before they can be used.
However, unlike how an agent’s internals are committed, to commit a trainer, we
will need to call that component’s own Commit() method.

The following code demonstrates how we might initialize both a BPNetwork
(target), in the bottom level of the ACS of our agent, John, as well as initialize a
GenericEquation (trainer):

DimensionValuePair x = World.NewDimensionValuePair("Variables", "X");
DimensionValuePair y = World.NewDimensionValuePair("Variables", "Y");
Agent John = World.NewAgent("John");

//Elided Agent Initialization

BPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, BPNetwork.Factory);

GenericEquation eq = ImplicitComponentInitializer.InitializeTrainer
 (GenericEquation.Factory, (Equation)LinearEquation);

net.Input.Add(x);
eq.Input.Add(x);

net.Output.Add(y);
eq.Output.Add(y);

John.Commit(net);
eq.Commit();

After we have initialized our trainer and target, the next thing that we need to do is
setup training data sets. Each training data set should specify a different
configuration for the activations of input layer of our trainer and target components.
There are two options, however, for specifying training data sets. The most

8 See the Basic Customization tutorial for more details

 6

straightforward method is to simply create a bunch of data sets using fixed input
activation patterns. This is the preferred method when you are working with a very
specific, known, set of training data. The other method that is available to you is to
define a range for each input node (or a subset thereof), between which training
should occur (and at a specified increment).

To define a range, for a given node on the input layer, we will use the AddRange
method in the ImplicitComponentInitializer. As part of calling this method,
we will need to specify the following:

 The IWorldObject associated with the input node

 The upper and lower bounds for the range

 The increment at which the range should be traversed (optional)9

Below is an example of how we would define a range (between 0 and 1, with an
increment of 0.1) for our variable “X”:

ImplicitComponentInitializer.AddRange(x, 0, 1, .1);

Note that if a range has been specified for a particular input node, it will be used for
that node, irrespective of if a data set specifies a fixed value for that node. Keep this
in mind in case you are using the ImplicitComponentInitializer to train
multiple networks as you may want to remove one or more ranges (by calling the
RemoveRange method) between training operations.

You MUST create at least one training data set, even if you have defined ranges for
all of your input nodes. The NewDataSet method in the
ImplicitComponentInitializer can be used to generate new data sets. Each
data set is represented as an ActivationCollection. You will notice very quickly,
while creating and using data sets, that they work essentially the same as
SensoryInformation. This is because ActivationCollection is actually the
base class for SensoryInformation. The following example demonstrates how to
setup a single data set for our variable “X”:

List<ActivationCollection> dataSets = new List<ActivationCollection>();

dataSets.Add(ImplicitComponentInitializer.NewDataSet());
dataSets[0].Add(x);

Recall that we specified a range for our variable “X”, so we do not need to worry
about specifying an activation. However, if we hadn’t specified a range for “X”, then
specifying an activation for “X” would be exactly the same process as is normally
done for SensoryInformation objects.

At this point, we are now ready to begin training. The Train method takes the
following as inputs:

 The target

9 The default increment is 0.01

 7

 The trainer
 The data sets (as a collection of ActivationCollection objects)
 A termination condition (optional, FIXED or SUM_SQ_ERROR)

 The number of times over which the data sets should be iterated (optional, if
the FIXED termination condition is used)

 The threshold under which the sum of squared error must fall (optional, if
the SUM_SQ_ERROR termination condition is used)

 The selection temperature (optional, if the target is
IReinforcementTrainable)

 Whether the data sets should be traversed in random order (optional)
 Whether the call to the method is intended only to test the performance of

the target given the data set (optional)

In order to initiate training on our target BPNetwork, using the GenericEquation
trainer (with SUM_SQ_ERROR termination condition and the default threshold), we
need to do the following:

ImplicitComponentInitializer.Train(net, eq, dataSets,
 ImplicitComponentInitializer.TrainingTerminationConditions.SUM_SQ_ERROR);

When the above code returns, the BPNetwork will be fully trained to report the
outputs (as specified by the GenericEquation) for the training data set (i.e., the
range of values that we defined for “X”).

As a final note, you can follow the status of the training operation simply by enabling
the Clarion Library’s built-in logging feature (see the section above). In addition, the
ImplicitComponentInitializer can also be serialized, thus allowing you to save
and reload your range specifications.

Auto-Encoding

One key feature of Clarion is the use of implicit “auto-encoder” components (e.g.,
Hopfield networks10) in the bottom level of the NACS to help facilitate associative
reasoning. These networks can be used to enable some of Clarion’s more unique
reasoning capabilities (especially with regard to the synergy of rule-based and
associative reasoning processes).

With the above being said, encoding knowledge into these sorts of components can
sometimes be a bit tricky. Therefore, in order to assist you with this process, the
ImplicitComponentInitializer also provides an Encode method, which is
specifically designed to “train” implicit components that implement the
IAutoEncoder interface.

Currently, the HopfieldNetwork class is the primary “auto-encoder” that comes
pre-packaged in the Clarion Library. Therefore, it will be used for our
demonstrations on how to Encode using the ImplicitComponentInitializer.

10 See the Clarion-H addendum to the technical specification document (located here)

http://www.cogsci.rpi.edu/~rsun/folder-files/SH-CLARION-H.pdf

 8

The steps for initializing a target ImplicitComponent for encoding is actually very
similar to what was described in the previous section for training. In fact, in many
ways, the two processes are essentially the same. However, the main place in which
they differ is that encoding does not require a “trainer.” Instead, we simply need to
specify the data sets that are being encoded into the auto-encoder, and the
ImplicitComponentInitializer will handle the rest.

Similar to the Train method, the Encode method takes the following inputs:

 The target auto-encoder
 The data sets
 A termination condition (optional, FIXED or UNTIL_ENCODED)
 The number of times over which the data sets should be iterated (optional, if

the FIXED termination condition is used)
 Whether the data sets should be traversed in random order (optional)
 Whether the call to the method is intended only to test the retrieval accuracy

of the target given the data set (optional)

When the Encode method returns, the target will be fully encoded and will be able
to rebuild any of the patterns in the data sets. In the code example below, we
demonstrate how you could setup a HopfieldNetwork (in the bottom level of the
NACS) with 10 nodes and use the ImplicitComponentInitializer to encode 3
activation patterns for those nodes (using the default encoding options):

//Initialize the 10 nodes
DimensionValuePair n1 = World.NewDimensionValuePair("Node", 1);
DimensionValuePair n2 = World.NewDimensionValuePair("Node", 2);
DimensionValuePair n3 = World.NewDimensionValuePair("Node", 3);
DimensionValuePair n4 = World.NewDimensionValuePair("Node", 4);
DimensionValuePair n5 = World.NewDimensionValuePair("Node", 5);
DimensionValuePair n6 = World.NewDimensionValuePair("Node", 6);
DimensionValuePair n7 = World.NewDimensionValuePair("Node", 7);
DimensionValuePair n8 = World.NewDimensionValuePair("Node", 8);
DimensionValuePair n9 = World.NewDimensionValuePair("Node", 9);
DimensionValuePair n10 = World.NewDimensionValuePair("Node", 10);

Agent John = World.NewAgent("John");

//Elided other agent initializations

HopfieldNetwork net = AgentInitializer.InitializeAssociativeMemoryNetwork
 (John, HopfieldNetwork.Factory);

//Add the 10 nodes to the Hopfield network
net.Nodes.Add(n1);
net.Nodes.Add(n2);
net.Nodes.Add(n3);
net.Nodes.Add(n4);
net.Nodes.Add(n5);
net.Nodes.Add(n6);
net.Nodes.Add(n7);
net.Nodes.Add(n8);
net.Nodes.Add(n9);

 9

net.Nodes.Add(n10);

//Don't forget to commit the network!
John.Commit(net);

ActivationCollection[] patterns = new ActivationCollection[3];

//Pattern 1
patterns[0] = ImplicitComponentInitializer.NewDataSet();
patterns[0].Add(n1, 1);
patterns[0].Add(n2, 0);
patterns[0].Add(n3, 1);
patterns[0].Add(n4, 0);
patterns[0].Add(n5, 1);
patterns[0].Add(n6, 0);
patterns[0].Add(n7, 1);
patterns[0].Add(n8, 0);
patterns[0].Add(n9, 1);
patterns[0].Add(n10, 0);

//Pattern 2
patterns[1] = ImplicitComponentInitializer.NewDataSet();
patterns[1].Add(n1, 1);
patterns[1].Add(n2, 1);
patterns[1].Add(n3, 0);
patterns[1].Add(n4, 0);
patterns[1].Add(n5, 1);
patterns[1].Add(n6, 1);
patterns[1].Add(n7, 0);
patterns[1].Add(n8, 0);
patterns[1].Add(n9, 1);
patterns[1].Add(n10, 1);

//Pattern 3
patterns[2] = ImplicitComponentInitializer.NewDataSet();
patterns[2].Add(n1, 0);
patterns[2].Add(n2, 0);
patterns[2].Add(n3, 0);
patterns[2].Add(n4, 1);
patterns[2].Add(n5, 1);
patterns[2].Add(n6, 1);
patterns[2].Add(n7, 0);
patterns[2].Add(n8, 0);
patterns[2].Add(n9, 0);
patterns[2].Add(n10, 1);

ImplicitComponentInitializer.Encode(net, patterns);

Populating the Input and Output Layers of an Implicit Component

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

 10

Timing

You may have noticed by this point that timing is an important feature in the Clarion
library. The system uses time stamps to track everything from the interactions
between the various subsystems and modules to response times. In general these
time stamps can be accessed using a (somewhat ubiquitous) property called
TimeStamp. In the sections that follow, we will look at two particular features that
use this timing and that may be useful for your Clarion-based project.

Response Time

Many tasks, especially those which aim to explore human cognitive phenomenon,
place importance on the role of response times as a measurement for performance.
Therefore, as part of the process of action decision-making, the Clarion library also
keeps track of various timings. These timings include:

 Perception time
o Includes drive strength updating operations in the MS and any “pre-

action selection” operations (e.g., goal setting) in the MCS
 Decision time

o Varies based on the level selection method that is used in the ACS
 Actuation time
 Reasoning time

Each of the above timings are tunable via parameters. These parameters can be
located as follows:

//Perception Time
Agent.GlobalParameters.PERCEPTION_TIME
John.Parameters.PERCEPTION_TIME

//Actuation Time
Agent.GlobalParameters.ACTUATION_TIME
John.Parameters.ACTUATION_TIME

//Decision Time
ActionCenteredSubsystem.GlobalParameters.TOP_LEVEL_DECISION_TIME;
John.ACS.Parameters.TOP_LEVEL_DECISION_TIME

ActionCenteredSubsystem.GlobalParameters.BOTTOM_LEVEL_DECISION_TIME;
John.ACS.Parameters.BOTTOM_LEVEL_DECISION_TIME

//Reasoning Time
NonActionCenteredSubsystem.GlobalParameters.REASONING_ITERATION_TIME;
John.NACS.Parameters.REASONING_ITERATION_TIME

 11

Every time an agent perceives, the action that results from that perception will also
be accompanied by a response time. In general, this response time is determined by:

If your simulation is being run in “asynchronous mode”, this response time will be
provided to you by default as part of the parameters passed into the
ProcessChosenExternalAction method. Otherwise, to get the response time
related to a particular perception you need to do the following:

long rt = John.GetResponseTime(si);

Note that the system will only hold onto the response time data for so long (as
determined by the PREVIOUS_RT_CAPACITY and
LOCAL_EPISODIC_MEMORY_RETENTION_THRESHOLD parameters, located in the
Agent and ActionCenteredSubsystem classes respectively), so this method
should typically be called immediately after the GetChosenExternalAction
method is called.

The response time represents the time that it took the agent to perform a particular
action (which was initiated by perceiving a sensory information object).
Conceptually, the response time .

In fact, the system already uses these response times in a variety of ways:

 The MAX_RESPONSE_TIME is used by default to increment the time stamp
when a new SensoryInformation object is created using
World.NewSensoryInformation...

o Note that the actual response time can also (optionally) be used
 To determine when an action is delivered to the simulating environment

o By adding the response time to the time stamp of the affiliated
perception

By default, response times can tend to look fairly one-dimensional since the
calculation of these times are based on parameters that don’t vary (except, of
course, for decision times). In reality, however, human response times fluctuate a
bit, even when tasks are highly learned and proceduralized. Therefore, in the
Clarion library, a set of parameters have been added to allow for variability in both
the perception and actuation times. This variability can be added by simply
changing the following parameters:

Agent.GlobalParameters.PERCEPTION_TIME_VARIABILITY_THRESHOLD
John.Parameters.PERCEPTION_TIME_VARIABILITY_THRESHOLD

Agent.GlobalParameters.ACTUATION_TIME_VARIABILITY_THRESHOLD
John.Parameters.ACTUATION_TIME_VARIABILITY_THRESHOLD

Once set, the perception and actuation times will vary . The distribution
of this variation is normalized by default. However, if you prefer to use a different

 12

distribution, you can also specify your own custom variability calculator using the
following delegate:

delegate long ResponseTimeVariabilityCalculator(long defaultTime, double
threshold);

Methods written using this delegate signature can be used by an agent to calculate
either the perception or the actuation time variability. Feel free to use the same
method for either timing, as the defaultTime and threshold parameters will be
specific to each timing. However, note that you can also specify different
distributions for these timings if you so desire.

If you do choose to write your own variability calculator, be aware that you must set
it for the agent in whom it is to be used. This is done by calling either of the
following properties:

John.PerceptionTimeVariabilityCalculator =
 (ResponseTimeVariabilityCalculator)SomeCalculatorMethod;
John.ActuationTimeVariabilityCalculator =
 (ResponseTimeVariabilityCalculator)SomeCalculatorMethod;

“Real-time” Mode

As was mentioned earlier, timing in the Clarion library is everything. However, the
system keeps track its own time stamps, which are not actually correlated to the
speed at which the system runs. In other words, it has no basis on the time within
the real world. By default, the system will simply run as quickly as it possibly can.
This is likely preferred for most tasks, as it would be very laborious if you had to
wait for more than 1 second each time your agent perceived something.

That being said, you may find cases where you will want your agent to operate in
“real-time” (e.g., when actually interacting with the real world). In these cases,
agents can be forced to take the amount of time they are supposed to take when
performing various operations. For example, if perception time takes 200
milliseconds, then an agent can be made to will wait that amount of time before it
starts performing decision-making; if actuation time takes 500 milliseconds, then an
agent will wait that long before delivering an action to the outside world; and so on
and so forth.

Turning on “real-time” mode is as simple as flipping a switch. Below is an example of
how we can specify that our agent, John, should run in real-time mode:

John.Parameters.IN_REAL_TIME = true;

Asynchronous Operation

As we have mentioned a couple of times throughout these tutorials, the Clarion
Library is an asynchronous (i.e., multi-threaded) system that leverages an advanced
publisher/subscriber event model in order to facilitate the interactions between all

 13

of the internal mechanisms within an agent. Because of this fact, the Clarion Library
can also be setup to interact asynchronously with a simulating environment.

Setting up the simulating environment to interact asynchronously with agents is
actually a fairly simple process. All we need to do is extend the abstract
AsynchronousSimulatingEnvironment11 class:

public class SomeSimulatingEnvironment : AsynchronousSimulatingEnvironment
{
... //Elided simulation code
}

After we have extended this class, there are only two other things that need to be
done:

1. Override the abstract ProcessChosenExternalAction method (which is
defined by the AsynchronousSimulatingEnvironment class)

2. Register the asynchronous simulating environment with the agent (by calling
the agent’s RegisterAsynchronousSimulatingEnvironment method)

The follow code sample demonstrates how we might accomplish the above for our
agent, John:

// Register the simulating environment in the initialization section
John.RegisterAsynchronousSimulatingEnvironment(this);

...

protected override void ProcessChosenExternalAction(Agent actor,
 ExternalActionChunk chosenAction, SensoryInformation relatedSI,
 Dictionary<ActionChunk, double> finalActionActivations, long performedAt,
 long responseTime)
{
 ... //Elided code to process the agent’s chosen action and deliver feedback
}

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

11 Located in the Clarion.Plugins namespace

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Setting Up & Using the NACS

© 2013. Nicholas Wilson

Table of Contents

A Brief Note ... 1

Setting Up & Performing Reasoning... 1
A Walk-through of the “Simple Reasoner” Task .. 2

Distributed Dimension-Value Pairs .. 3
Adding Knowledge to the GKS .. 4
Initializing Associative Memory Networks ... 4
Initializing Associative Rules... 6
Performing Reasoning ... 6

Setting Up & Using Episodic Memory ... 9
Creating Episodes ... 9
Initializing Associative Episodic Memory Networks ... 9
Generating New Knowledge and Associative Rules ... 9
Performing “Offline” Learning .. 10

A Brief Note

Before you get started using the NACS you should note that the Clarion Library
provides two methods for interacting with the NACS. The simpler method (i.e., as a
stand-alone mechanism) is outlined herein. The other method (i.e., integrated with
and initiated by the ACS and/or MCS1) can be found in the “Advanced ACS Setup”
tutorial.2 However, keep in mind that you should still read this tutorial first before
attempting to use the NACS via the integrated method. At the very least, this tutorial
will teach you how to initialize the top and bottom levels of the NACS. Furthermore,
you may find that the stand-alone method is very useful for testing whether the
NACS is operating correctly before moving onto the somewhat more complicated
matter of integrating the NACS with the other subsystems.

Setting Up & Performing Reasoning

In this section we will go over an example of how to set up and run a task using the
NACS’s reasoning mechanism. If you are interested in following along, the specific
example through which we will be walking is called “Reasoner – Simple.cs” and it can
be found in the Advanced section of the Samples folder.

The “simple reasoner” simulation sample was designed with the same objective in
mind as the “simple hello world” task. That is, its primary purpose is to provide a

1 As is specified by the Clarion theory
2 In the Advanced section of the Tutorials folder

 2

simple introduction to the NACS. The specifics of the task, themselves, are not
particularly interesting, nor were they intended to be. Instead, this task is simply
meant to clearly demonstrate how to correctly setup, train, and use the various
aspects of the NACS’s reasoning mechanism. So let’s begin our walk-through:

A Walk-through of the “Simple Reasoner” Task

The first thing you need to know are the necessary namespaces. As is normally the
case, the primary classes you will use are located in either the Clarion or
Clarion.Framework namespaces:

using Clarion;
using Clarion.Framework;

With this point out of the way, let’s move on to the Main method:

public static void Main()
{
 Agent reasoner = World.NewAgent();

 InitializeWorld(reasoner);

 foreach (DeclarativeChunk dc in chunks)
 reasoner.AddKnowledge(dc);

 HopfieldNetwork net = AgentInitializer.InitializeAssociativeMemoryNetwork
 (reasoner, HopfieldNetwork.Factory);

 net.Nodes.AddRange(dvs);

 reasoner.Commit(net);

 EncodeHopfieldNetwork(net);

 SetupRules(reasoner);

 reasoner.NACS.Parameters.REASONING_ITERATION_COUNT = 2;
 reasoner.NACS.Parameters.CONCLUSION_THRESHOLD = 1;

 DoReasoning(reasoner);

 reasoner.Die();

 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
}

Most of the interesting details of this task are actually in other methods that are
called by the Main method. However, you may notice a few unfamiliar things in the
above code. First, note the following line:

InitializeWorld();

 3

For our “simple reasoner” task, we begin by initializing the World with 30
dimension-value pairs and 5 unique declarative “pattern” chunks. These chunks are
manually specified by the following:

static int [][] patterns =
{
 new int [] {1, 3, 5, 11, 13, 16, 19, 23, 27},
 new int [] {3, 6, 7, 8, 12, 15, 20, 21, 26},
 new int [] {2, 4, 8, 9, 11, 17, 18, 24, 30},
 new int [] {1, 4, 10, 12, 15, 17, 19, 22, 29},
 new int [] {3, 5, 8, 10, 14, 18, 20, 25, 28}
};

Each of the sub arrays (located in the 2nd dimension of the above 2-dimensional
array) specifies a different activation pattern for the 30 dimension-value pairs. The
“value” of each dimension-value pair is actually numbered, and the integers in the
above patterns are associated with these values. As mentioned previously, we will
also need to create a DeclarativeChunk for each of these patterns. The following
World initialization code demonstrates how we can accomplish this:

static void InitializeWorld(Agent a)
{
 for (int i = 1; i <= nodeCount; i++)
 {
 dvs.Add(World.NewDistributedDimensionValuePair(a, i));
 }

 for (int i = 0; i < patterns.Length; i++)
 {
 DeclarativeChunk dc =
 World.NewDeclarativeChunk(i, addSemanticLabel:false);

 foreach (var dv in dvs)
 {
 if (patterns[i].Contains(dv.Value))
 {
 dc.Add(dv);
 }
 }

 chunks.Add(dc);
 }
}

Note that the “dvs” and “chunks” collections in the above code are simply used to
track our dimension-value pairs and declarative chunks between the different
“phases” (or methods) of the task. As has been discussed in previous tutorials, this is
generally a useful thing to do within any simulating environment, as it saves the
additional overhead of using the “World.Get...” methods.

Distributed Dimension-Value Pairs
In the previous code sample, you may have noticed that we called the
NewDistributedDimensionValuePair method instead

 4

NewDimensionValuePair. This has been done in order to introduce you to a new
(as of 6.1.1) feature of the Clarion library: DistributedDimensionValuePair. The
concept behind distributed dimension-value pairs was first introduced by Helie &
Sun (2010). The idea here is that more semantic representations (such as chunks)
can be translated into more “distributed” (i.e., neural-like) representations in the
bottom level of Clarion. In other words, instead of having the nodes of a network be
tied to dimension-value pair that has inherent semantic meaning, collections of
somewhat arbitrarily defined nodes could instead be utilized to represent semantic
concepts more in a more sub-symbolic way (see Helie & Sun, 2010 for more details).
As a matter of implementation, this idea has been actualized in the form of
DistributedDimensionValuePair.

Distributed dimension-value pairs are agent-specific and do not require a dimension
be specified (just a value). Otherwise, once initialized, they can be utilized
essentially like a normal dimension-value pair. When added to a chunk (and as
nodes in an ImplicitComponent), these distributed dimension-value pairs provide
a “sub-symbolic” featurized representation for the chunk itself.

Adding Knowledge to the GKS

Moving back to our discussion of the Main method, the next thing you may have
noticed is the call to the AddKnowledge method (located in the Agent class):

foreach (DeclarativeChunk dc in chunks)
 reasoner.AddKnowledge(dc);

This method is used to add the declarative chunks3 into the GKS of our agent. Be
aware that ALL chunks MUST be added to the GKS if they are to be used as part of
reasoning. Besides the obvious theoretical consideration, we also need to do this for
implementation-specific purposes. In particular, various aspects of the GKS’s
backend are actually used to help facilitate the reasoning process.

You should also note here that chunks should NEVER be altered (say, by adding or
removing a dimension-value pair) after they have been added to the GKS. Doing so
will break the storage method that is used to store these chunks within the GKS. To
relate this to a well-known concept from object-oriented programming, altering a
chunk once it is in the GKS is essentially the same as changing the hash code of an
object after it has been stored within a HashMap. In order words, DON’T DO IT!

Initializing Associative Memory Networks

Moving along with our walk through of the Main method, the next thing to notice is
the following:

HopfieldNetwork net = AgentInitializer.InitializeAssociativeMemoryNetwork
 (reasoner, HopfieldNetwork.Factory);

net.Nodes.AddRange(dvs);

3 Technically, any type of Chunk can be added as “knowledge” into the GKS.

 5

reasoner.Commit(net);

These lines are used to initialize a HopfieldNetwork in the bottom level of the
NACS of our agent. Note that the HopfieldNetwork is a so called “auto-encoder”,
and as such, is mainly used as an auto-associative memory network.4 Initializing a
HopfieldNetwork is slightly different than initializing your standard “feed-
forward” network. In particular, since the HopfieldNetwork is conceptualized as
asynchronous (meaning it technically doesn’t have an input and output layer5),
IWorldObject objects are actually just added to a general collection of “nodes” for
this network instead of being specified as part of either the input or output layer.

Once our HopfieldNetwork is set up, we need to encode some knowledge into it.
Auto-associative memory networks work by “reconstructing” encoded knowledge
(or patterns) given a partial (or noisy) “input.” For our current task, we will want to
encode the 5 patterns (i.e., the declarative chunks) that were discussed previously.

The Encode method, in the ImplicitComponentInitializer, actually handles
the majority of the encoding work.6 The only thing we need to do to use this method
is specify the “data sets” that are being encoded. Also, you may wish to perform a
separate “test” run to ensure that the data sets are correctly recalled.7 We can do
this by simply calling the Encode method and specifying true for the ”testOnly“
parameter. Note that this would most often be done for cases where you wished to
use a different TRANSMISSION_OPTION for the “encoding” and “testing” phases.

The following code, from the “simple reasoner” task, demonstrates how we might
encode patterns into, and then “test” the recall accuracy of our HopfieldNetwork:

static void EncodeHopfieldNetwork(HopfieldNetwork net)
{
 double accuracy = 0;

 do
 {
 net.Parameters.TRANSMISSION_OPTION =
 HopfieldNetwork.TransmissionOptions.N_SPINS;

 List<ActivationCollection> sis = new List<ActivationCollection>();
 foreach (DeclarativeChunk dc in chunks)
 {

4 The difference between auto-associative and hetero-associative networks is mainly conceptual. The
bottom level of the NACS can actually store any combination of these two types of networks and both
will function as expected according to their own purpose and capabilities.
5 As a matter of implementation, the HopfieldNetwork actually uses the non-asynchronous
methodology (i.e., with equivalently configured input and output layers). However, all interactions
have been purposely designed so that the network can be initialized using either conceptualization.
6 For more details on how to use this initializer, see the “Useful Features” tutorial (located in the
“Features & Plugins” section of the “Tutorials” folder).
7 Although the Encode method actually performs this step automatically, if the default
UNTIL_ENCODED option is used.

 6

 ActivationCollection si = ImplicitComponentInitializer.NewDataSet();

 si.AddRange(dc, 1);

 sis.Add(si);
 }

 ImplicitComponentInitializer.Encode(net, sis);

 net.Parameters.TRANSMISSION_OPTION =
 HopfieldNetwork.TransmissionOptions.LET_SETTLE;

 accuracy = ImplicitComponentInitializer.Encode(net, sis, testOnly: true);
 } while (accuracy < 1);
}

After we have encoded knowledge into the bottom level of the NACS, the next thing
we need to do is generate and add associative rules to the top level.

Initializing Associative Rules

The process for initializing associative rules in the top level of the NACS is very
similar to the process used to add action rules to the top level of the ACS. For our
“simple reasoner” task, we want to set up 5 rules, with the following convention:

If pattern X, then conclude pattern X + 1

For example, if the input to the top level is the DeclarativeChunk representing
pattern 1, then the top level should conclude the DeclarativeChunk representing
pattern 2. The following code demonstrates how we would set up these sorts of
associative rules in the top level of the NACS:

static void SetupRules(Agent reasoner)
{
 for (int i = 0; i < chunks.Count - 1; i++)
 {
 RefineableAssociativeRule ar =
 AgentInitializer.InitializeAssociativeRule(reasoner,
 RefineableAssociativeRule.Factory, chunks[i + 1]);

 ar.GeneralizedCondition.Add(chunks[i], true);

 reasoner.Commit(ar);
 }
}

Performing Reasoning

The last thing we may want to do before we initiate the reasoning process is to set
any (optional) reasoning parameters. For our current task, we will need to set the
following parameters:

 7

reasoner.NACS.Parameters.REASONING_ITERATION_COUNT = 2;

reasoner.NACS.Parameters.CONCLUSION_THRESHOLD = 1;

The first parameter specifies that the NACS should perform 2 reasoning iterations
before return its conclusions. The second parameter indicates that we only want
those “fully activated” conclusions to be returned. There are many other reasoning
parameters that can be set, and which will alter the behavior of the reasoning
mechanism. For more information on them, see the “auto generated”
documentation8 for the NonActionCenteredSubsystemParameters class.

At this point, though, we should now be ready to start reasoning. Note that
reasoning is currently only operational as a stand-alone mechanism. Future versions
of the Clarion Library will provide a more natural integration into the overall
system. However, as this integration is currently under development, to use the
NACS’s reasoning mechanism, you will need to call the PerformReasoning method
(found in the NACS of an agent) and specify the “input” that is being used to initiate
this reasoning:

var o = reasoner.NACS.PerformReasoning(si);

The PerformReasoning method will return the conclusion(s) from reasoning in the
form of a collection ChunkTuple objects. The ChunkTuple is essentially just a
“wrapper” for a conclusion Chunk and its associated activation (which specifies the
“support” for that conclusion). For our “simple reasoner” task, we use a partial
(noisy) reconstruction of each pattern as inputs (into 5 different rounds of
reasoning). These “noisy” patterns are created by “zeroing-out” a percentage of each
pattern. For example, with a noise value of .4, the final 40% of the input will have
nothing but 0 activations.

The following code demonstrates how, for our current example, we might set up
input patterns, initiate reasoning, and process the conclusions:

static void DoReasoning(Agent reasoner)
{
 int correct = 0;

 foreach (DeclarativeChunk dc in chunks)
 {
 ActivationCollection si = ImplicitComponentInitializer.NewDataSet();

 int count = 0;

 foreach (DimensionValuePair dv in dvs)
 {
 if (((double)count / (double)dc.Count < (1 - noise)))
 {
 if (dc.Contains(dv))
 {

8 Located in the “Documentation” folder.

 8

 si.Add(dv, 1);
 ++count;
 }
 else
 si.Add(dv, 0);
 }
 else
 si.Add(dv, 0);
 }

 Console.WriteLine("Input to reasoner:\r\n" + si);

 Console.WriteLine("Output from reasoner:");

 var o = reasoner.NACS.PerformReasoning(si);

 foreach (var i in o)
 {
 Console.WriteLine(i.CHUNK);
 if (i.CHUNK == dc)
 correct++;
 }
 }
 Console.WriteLine("Retrieval Accuracy: " +
 (int)(((double)correct / (double)chunks.Count) * 100) + "%");
}

If everything is working correctly, we should see the following behavior:

 1st iteration = the bottom level will complete the partial input pattern
 2nd iteration = the top level will receive the conclusion associated with the

“reconstructed pattern” from the bottom level and will conclude the
following pattern

 Conclusions = the “conclusion chunks” from each reasoning iteration

For example, if the input is based on a “partial reconstruction” of pattern 1, the
conclusions from reasoning should be the declarative chunks associated with
patterns 1 and 2.

Finally, to complete our task, we will need to kill our agent (as always):

reasoner.Die();

This concludes our walk through to the “simple reasoner” task. At this point, you
should have everything you need to get started on developing your own reasoning-
specific tasks using the Clarion Library’s NACS. If you are interested, you can learn
more about how to integrate the NACS with the ACS in the “Advanced ACS Setup”
tutorial located in the Advanced section of the Tutorials folder.

 9

Setting Up & Using Episodic Memory
This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Creating Episodes

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Initializing Associative Episodic Memory Networks

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Generating New Knowledge and Associative Rules

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

 10

Performing “Offline” Learning

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Advanced ACS Setup

© 2013. Nicholas Wilson

Table of Contents

A Brief Note ... 1

Interacting with the NACS .. 1
Making Reasoning Requests ... 2
Specifying Alternative Dimensions .. 5
Filtering Input/Conclusions ... 5
Retrieving Chunks from the GKS ... 6
Interacting with Episodic Memory ... 6

Retrieving Episodes .. 6
“Offline” Learning ... 7

Generative Actions ... 7
An Example: Using Generative Actions to Change Local Parameters 7

A Brief Note

The primary focus of this tutorial is to demonstrate how to interact with the NACS
using the ACS (and by creative extension the MCS). However, there is another,
simpler, method for using the NACS (i.e., as a stand-alone mechanism). That method
is described in the “Setting Up and Using the NACS” tutorial (found in the Advanced
folder of the Tutorials section).

Keep in mind that you should read that tutorial first before attempting to integrate
the ACS and NACS. At the very least, it will show you how to initialize the top and
bottom levels of the NACS. Furthermore, you may find that the stand-alone method
is very useful for testing whether the NACS is operating correctly before moving
onto the somewhat more complicated matter of integrating the NACS with the other
subsystems.

Interacting with the NACS

As part of performing more advanced tasks, you may wish you agent to reason over
its declarative knowledge about the world before (and in order to aid in) action
decision making. To this end, the ACS (or MCS) and NACS have been designed to
interact with one another. In the following sections we will look at an example of
how the NACS and ACS can be setup to work in tandem on a simple reasoning-type
task. In particular, we will be looking at the sample “Reasoner – Full.cs”, which can
be found in the Advanced section of the samples folder. This example extends
“Reasoner – Simple.cs” to integrate ACS and NACS functioning. If you have not

 2

already done so, you will want to refer to the Advanced tutorial “Setting Up & Using
the NACS” for an overview of this simple reasoning task as well as instructions on
how to initiate the NACS.

The full reasoner task is similar to the simple reasoner, except that the specifics of
the task itself are actually a bit simpler. In particular, the ACS is set up using only the
top level whereas the NACS is set up with only the bottom level. The task itself
entails the perceiving of one of 5 “noisy” patterns. This pattern triggers a call by the
ACS to the NACS. The NACS then uses an auto-associative network on the bottom
level to complete the pattern and returns a fully activated chunk back to the ACS
(which represents the full pattern). That chunk is then stored in working memory.
Finally, the agent is asked whether the initial input was the partial pattern for a
particular target (i.e., the 2nd pattern). The expected output (from the agent) for this
simulation is: No, Yes, No, No, No.

Making Reasoning Requests

Initiating the NACS reasoning using the ACS is as simple as setting a goal in the goal
structure or a chunk in working memory. In other words, to have the ACS initiate
reasoning, all you need to do is use a ReasoningRequestActionChunk. The
following code demonstrates how to initialize this action chunk:

Note that the second line is similar to how we specify set/reset commands when
using GoalStructureUpdateActionChunk or
WorkingMemoryUpdateActionChunk.1 Specifically, we use the
RecognizedReasoningActions to specify the type of reasoning request that is
being made by the ACS. In our current example, we are specifying that the “think”
action will prompt a new round of reasoning and perform 1 iteration. In total, the
ReasoningRequestActionChunk recognizes the following actions:

 NEW – Specifies that a new round of reasoning is being requested
 CONTINUE – Similar to NEW, but specifies that reasoning should be continued

from a previous round
 PEEK – Specifies that the chunks that have thus far been concluded should be

returned, but that reasoning should continue
 INTERRUPT – Similar to PEEK, but specifies that reasoning should be halted

immediately

Note that if you do not specify the number of iterations, the NACS will reason
continuously. The action commands can also be chained. For example, suppose you

1 See the Setting Up & Using the Goal Structure or Intermediate ACS Setup tutorials
for details on how to implement these action chunk types

ReasoningRequestActionChunk think =
 World.NewReasoningRequestActionChunk ("DoReasoning");
think.Add (NonActionCenteredSubsystem.RecognizedReasoningActions.NEW, 1);

 3

want to reason for 20 iterations, but look at the conclusions halfway through. The
following shows how this could be accomplished:

On top of this, by leveraging the “parameter change” capabilities inherent to all
action chunks, you can also specify various settings that you wish to use for the
round of reasoning that is being requested. For example, suppose you only wanted
the top level of the NACS to be used, the following demonstrates how this could be
set up:

Of course keep in mind that this will only work if the “think” action is initialized
specifically for and is used solely by John. Also note that, as is the case with other
internally-oriented actions, if a ReasoningRequestActionChunk is chosen by the
ACS, the agent will deliver the “DO_NOTHING” action to the simulating environment
as its chosen action for the particular sensory information that caused the
ReasoningRequestActionChunk to be selected.

Although setting up a ReasoningRequestActionChunk is fairly straightforward,
handling the coordination of the subsystems requires a little more thought. For
example, the determination of which level(s) should recommend the reasoning
request action and what the ACS should do while waiting for the conclusions from
the NACS (or if it should wait) must be carefully devised and implement. Of course
the particulars of how you implement this is based on the requirements of your task.
However, the primary reason why this consideration is so important is because the
NACS is designed to run in parallel with the ACS. This is done so that an agent can
continue to interact with the world while reasoning is being performed. However, in
many tasks (such as this), you may want the ACS to wait until the NACS has
completed reasoning. For the full reasoner sample, a fairly simple process is used,
with rules on the top level of the ACS and “states” utilized to coordinate the two
subsystems. In other words, we will use the state concept to “modulate” when
certain actions are recommended by the ACS. The following code demonstrates how
this can be set up:

World.NewDimensionValuePair ("state", 1);
World.NewDimensionValuePair ("state", 2);
World.NewDimensionValuePair ("state", 3);

RefineableActionRule doReasoning =
 AgentInitializer.InitializeActionRule (reasoner,
 RefineableActionRule.Factory, think);

doReasoning.GeneralizedCondition.Add (World.GetDimensionValuePair ("state", 1));
reasoner.Commit (doReasoning);

RefineableActionRule doNothing =

think.Add (NonActionCenteredSubsystem.RecognizedReasoningActions.NEW, 10);
think.Add (NonActionCenteredSubsystem.RecognizedReasoningActions.CONTINUE, 10);

think.Add (John.NACS, "USE_BOTTOM_LEVEL", false);
think.Add (John.NACS, "USE_TOP_LEVEL", true);

 4

 AgentInitializer.InitializeActionRule (reasoner,
 RefineableActionRule.Factory, ExternalActionChunk.DO_NOTHING);

doNothing.GeneralizedCondition.Add (World.GetDimensionValuePair ("state", 2));
reasoner.Commit (doNothing);

The idea here is that only certain rules will be eligible in certain states. For example,
the first rule from above will only be eligible to fire when the ("state", 1)
dimension-value pair is activated and second rule is only eligible when the
("state", 1) dimension-value pair is activated. Within the simulating world, the
states transition as follows:

1. This state occurs in conjunction with the first presentation of the noisy
pattern

2. This state occurs after the first time the agent issues the “DO_NOTHING”
action (which is also correlated with the ACS making the reasoning request)

3. This state occurs when the working memory is updated inside of the agent

The code below demonstrates how this “state transition” process might be
accomplished:

int state_counter = 1;
while (chosen == null || chosen == ExternalActionChunk.DO_NOTHING)
{
 SensoryInformation si = World.NewSensoryInformation (reasoner);
 si.Add (World.GetDimensionValuePair ("state", state_counter), 1);

 int count = 0;
 foreach (DimensionValuePair dv in dvs)
 {
 if (((double)count / (double)dc.Count < (1 - noise)))
 {
 if (dc.Contains (dv))
 {
 si.Add (dv, 1);
 ++count;
 } else
 si.Add (dv, 0);
 } else
 si.Add (dv, 0);
 }

 reasoner.Perceive (si);
 chosen = reasoner.GetChosenExternalAction (si);

 if(reasoner.GetInternals(
 Agent.InternalWorldObjectContainers.WORKING_MEMORY).Count() > 0)
 state_counter = 3;
 else
 state_counter = 2;
}

 5

The while loop will continue the perception action process for the current input
until the agent responds either “yes” or “no” to whether that noisy pattern was the
2nd one. The rules and actions that enable this response can be set up as follows:

Specifying Alternative Dimensions

You might have noticed in the above code that we have specified something called
"altdim" when adding conditional inputs to our “no” rule. This is the case because
chunks themselves, by default, are considered self-contained and therefore are
technically represented at the dimension-value pair level within their own
dimension. That is, the library will treat the relation between chunks, when added to
the condition of a rule, using the AND operation. However, at times it may be
preferable to have the chunks organized together (i.e., within the same dimension)
so that they can be compared using an OR operation. To enable this possibility, the
Add method of a rule’s condition has an option “alternative dimension” parameter.
Any world object (be it a chunk, dimension-value pair, etc.) that is added to the
condition with an alternative dimension, will be “placed” in that dimension (for that
rule). This does not change the objects dimension at the “descriptive” (i.e., world)
level. However, it does allow for objects that are naturally correlated (by default) to
be compared as if they were.

Filtering Input/Conclusions

The interaction between the ACS and NACS occurs seamlessly. That is, when
reasoning request actions are chosen in the ACS, the NACS will automatically begin
the reasoning process. Subsequently, when the NACS is finished reasoning, it’s
conclusions will automatically be sent back to the ACS and the ACS will populate the
working memory all on its own. However, this is done based on certain default
assumptions. For instance, the ACS will send the entire sensory information object
to the NACS to use as its input into reasoning whenever a reasoning request action

ExternalActionChunk yes_act = World.NewExternalActionChunk ("Yes");
ExternalActionChunk no_act = World.NewExternalActionChunk ("No");

RefineableActionRule yes =
 AgentInitializer.InitializeActionRule (reasoner,
 RefineableActionRule.Factory, yes_act);

yes.GeneralizedCondition.Add (World.GetDeclarativeChunk (1), true);
reasoner.Commit (yes);

RefineableActionRule no =
 AgentInitializer.InitializeActionRule (reasoner,
 RefineableActionRule.Factory, World.GetActionChunk ("No"));

no.GeneralizedCondition.Add (World.GetDeclarativeChunk (0), true, "altdim");
no.GeneralizedCondition.Add (World.GetDeclarativeChunk (2), true, "altdim");
no.GeneralizedCondition.Add (World.GetDeclarativeChunk (3), true, "altdim");
no.GeneralizedCondition.Add (World.GetDeclarativeChunk (4), true, "altdim");
reasoner.Commit (no);

 6

is chosen. Additionally, the ACS will always load all of the chunks that are concluded
by the NACS into working memory (provided that the number of chunks do not
exceed the working memory capacity). However, you may find instances where you
will want to filter the inputs into the NACS and the conclusions from the NACS. To
enable this, the InputFilterer and KnowledgeFilterer delegates have been
defined:

delegate ActivationCollection InputFilterer(ActivationCollection input);

delegate IEnumerable<ChunkTuple> KnowledgeFilterer(IEnumerable<ChunkTuple> input);

These delegates allow you to specify your own custom filtering operations. If
specified (using the ReasoningInputFilterMethod or
ReasoningOutputFilterMethod properties, found in Agent.ACS), the ACS will
call these delegates prior to initiating reasoning or loading the conclusions into
working memory.

Retrieving Chunks from the GKS

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Interacting with Episodic Memory
This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Retrieving Episodes

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

 7

“Offline” Learning

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Generative Actions
This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

An Example: Using Generative Actions to Change Local Parameters

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Using Plugins

© 2013. Nicholas Wilson

Table of Contents

The Serialization Plugin ... 1
Serializing (or Saving) Various Aspects of a Simulating Environment 1
De-serializing (or Loading) Various Aspects of a Simulating Environment 2

Interacting with Front-Ends ... 2
Remote Simulating Environments .. 2

Communicating via XML ... 2
Communicating via JSON .. 3

The Keyboard and Mouse Plugins .. 3
Using the “Built-In” Plugin Actions ... 3

The Serialization Plugin

Often times it may be the case, while in the process of tuning or training (etc.) a
simulation, that you might wish to “suspend” the running of your task and then
“resume” it at a later date while still maintaining all of the configurations, settings,
and/or learning that has taken place within your simulating environment. To
address these sorts of needs, the “built-in” objects (including both descriptive and
functional objects) within the Clarion Library have been designed to be serializable.
This has been done in order to provide you with a means for loading and unloading
both descriptive objects (i.e., those objects contained within the World) as well as
functional objects (i.e., all of the agents’ internals).

Furthermore, the library also contains a useful tool, the SerializationPlugin 1,
whose purpose is to aid you in the process of serializing and de-serializing your
simulating environment. In this section we will demonstrate how you can use of the
SerializationPlugin to preserve the configuration of your simulations.

Serializing (or Saving) Various Aspects of a Simulating Environment

This feature has been developed, however the documentation, guides, and tutorials
for it are currently incomplete. If you would like to use this feature and have any
questions on how to make use of it, feel free to contact us at
clarion.support@gmail.com. In future releases, this section will contain additional
information describing how to use this feature.

1 Located in the Clarion.Plugins namespace

http://msdn.microsoft.com/en-us/library/ms233843.aspx
mailto:clarion.support@gmail.com

 2

De-serializing (or Loading) Various Aspects of a Simulating Environment

This feature has been developed, however the documentation, guides, and tutorials
for it are currently incomplete. If you would like to use this feature and have any
questions on how to make use of it, feel free to contact us at
clarion.support@gmail.com. In future releases, this section will contain additional
information describing how to use this feature.

Interacting with Front-Ends

Remote Simulating Environments

This feature has been developed, however the documentation, guides, and tutorials
for it are currently incomplete. If you would like to use this feature and have any
questions on how to make use of it, feel free to contact us at
clarion.support@gmail.com. In future releases, this section will contain additional
information describing how to use this feature.

Warning: this plugin has not been thoroughly tested. If you run into any problems
while attempting to use it, please contact clarion.support@gmail.com

Communicating via XML

This feature has been developed, however the documentation, guides, and tutorials
for it are currently incomplete. If you would like to use this feature and have any
questions on how to make use of it, feel free to contact us at
clarion.support@gmail.com. In future releases, this section will contain additional
information describing how to use this feature.

mailto:clarion.support@gmail.com
mailto:clarion.support@gmail.com
mailto:clarion.support@gmail.com
mailto:clarion.support@gmail.com

 3

Communicating via JSON

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

The Keyboard and Mouse Plugins

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Using the “Built-In” Plugin Actions

This feature is currently under development and, therefore, is not available in the
current release of the Clarion Library.

In future releases, this section will contain information about how to use this feature
(when it becomes available).

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

 1

Advanced Customization Tutorial

© 2013. Nicholas Wilson

Table of Contents

Getting Started ... 1
ACS Structure ... 2
NACS Structure .. 3
MS Structure ... 3
MCS Structure ... 3
Interfaces and Templates .. 4

How to Implement a Custom Component ... 5
Requirements for Implementing a Custom Component ... 5
Implementing a “Factory” .. 5
Implementing a “Parameters” class .. 10

Local (per instance) Parameters... 11
Global (static) Parameters .. 15

Factor # 1 .. 15
Factor # 2 .. 15
Factor # 3 .. 16
Factor # 4 .. 17
Factor # 5 .. 17
Factor # 6 .. 19
Factor # 7 .. 20

Commiting and Retracting ... 21
Using the InitializeOnCommit Property ... 23

How to Implement a Custom (Secondary) Drive .. 24
Implementing the Nested “Factory” Class ... 25
Implementing the Nested “Parameters” Class .. 27

Serializing a Custom Component (or Drive) .. 29
Specifying the System.Runtime.Serialization Resource .. 29
The DataContract Attribute ... 30
The DataMember Attribute .. 31
Pre/Post Serialization and Deserialization Attributes .. 32
Serializing the Global (static) Parameters .. 33

Getting Started

Before we get started on how to build your own custom components and drives,
there is some terminology you must know first:

 Component. The internal (i.e., functional) objects that define how the bottom
and top levels of the subsystems within an agent operate. All components

 2

(and component templates) extend from the ClarionComponent class
(located in the Clarion.Framework.Templates namespace).

 Implicit Component. The bottom level components. All bottom level
components extend from the ImplicitComponent class (located in the
Clarion.Framework.Templates namespace).

 Rule. The top level components. All top level components extend from the
Rule class (located in the Clarion.Framework.Templates namespace).

 Drive. A special component for the bottom level of the MS (more details to
follow). All components intended for the bottom level of the MS extend from
the Drive class (located in the Clarion.Framework.Templates namespace).

 Module. The meta-cognitive subsystem, itself, is not actually a subsystem (per
say) and so it does not technically have a top and bottom level. Instead, the
meta-cognitive subsystem is a container for meta-cognitive “modules”, which
themselves contain a top and bottom level. The meta-cognitive modules act
like “mini” ACSs, containing much of the same capabilities and requirements
as the actual ACS.

 All meta-cognitive modules extend from the MetaCognitiveModule
class (located in the Clarion.Framework.Templates namespace).1

Next, you need to be aware of the specific requirements for each of the subsystems.
The top and bottom levels of the subsystems are not entirely generic. Each
subsystem has its own requirements when it comes to the type of components it will
accept at the bottom and top levels:

ACS Structure

The ACS is defined by the ActionCenteredSubsystem class and has the following
structure:

1. The bottom level of the ACS expects components that extend from the
ImplicitComponent class, therefore any component that is intended for the
bottom level of the ACS MUST extend this class.

2. The top level of the ACS will only accept 3 types of rules: refineable action
rules, IRL rules, and fixed rules. Therefore, any component that is intended
for the top level of the ACS MUST extend either the
RefineableActionRule, IRLRule, or FixedRule classes (located in the
Clarion.Framework namespace)

1 While it is technically possible to implement a custom meta-cognitive module, this is a VERY
advanced (i.e., developer level) customization and requires a deep knowledge of the interworking of
the system. A “Developer Tutorial” may be made available upon request by contacting
clarion.support@gmail.com.

mailto:clarion.support@gmail.com

 3

NACS Structure

The NACS is defined by the NonActionCenteredSubsystem class and has the
following structure:

1. Like the bottom level of the ACS, the bottom level of the NACS also expects
components that extend from the ImplicitComponent class, therefore any
component that is intended for the bottom level of the NACS MUST also
extend this class.

2. The top level of the NACS expects components that extend from the
AssociativeRule class (located in the Clarion.Framework.Templates
namespace), therefore any component that is intended for the top level of the
NACS MUST also extend this class.

MS Structure

The MS is defined by the MotivationalSubsystem class and has the following
structure:

1. As was stated earlier, the bottom level of the MS expects components that
derive from the Drive class. The Drive class is a somewhat special
component since it is really just a wrapper for an implicit component. In fact,
the Drive class itself expects a component that extends from the
ImplicitComponent class.

2. Unlike the other subsystems, the top level of the MS is special in that it does
not actually contain components. Instead, the top level of the MS contains
goals (See the “Setting Up & Using the Goal Structure” tutorial in the “Basic
Tutorials” section of the “Tutorials” folder for details concerning how to setup
and use goals).

MCS Structure

The MCS is defined by the MetaCognitiveSubsystem class, however, all of the
functionality for the MCS is defined by the MetaCognitiveModule classes2 that are
contained within it. These modules have the following structure:

1. The bottom level of a meta-cognitive module is essentially the same as the
bottom level of the ACS in that it expects components that extend from the
ImplicitComponent class. Therefore, any component that is intended for
the bottom level of a meta-cognitive module MUST extend this class.

2. The top level of a meta-cognitive module is similar to the top level of the ACS,
except that it only accepts one type of rule, refineable action rules. Therefore,
and component that is intended for the top level of a meta-cognitive module
MUST extend the RefineableActionRule class.

2 All currently implemented meta-cognitive modules can be found in the
Clarion.Framework.Extensions namespace

 4

Interfaces and Templates

In addition to what we have laid-out so far, you should also be aware of the various
interfaces that are available to you (and located in the Clarion.Framework.Templates
namespace). These interfaces inform the system about the capabilities of your
component. For example:

 Is your component trainable? If so, it needs to implement the ITrainable
interface.

 Can your component be trained using reinforcement learning? If so, it needs to
implement the IReinforcementTrainable interface.

 Does your component use Q-learning? If so, it needs to implement the
IUsesQLearning interface.

 Will your component track positive and negative match statistics? If so, it
needs to implement the ITracksMatchStatistics interface.

 Can your component be deleted by the system (say, via density considerations)?
If so, it needs to implement the IDeletable interface.

 Does your component require the input for the following state to perform
learning? If so, it needs to implement the IHandlesNewInput interface.

 Is your component able to extract rules? If so, it needs to implement the
IExtractsRules interface.

 Can your component be refined (using the RER algorithm)? If so, it needs to
implement the IRefineable interface.

 Etc.

As is the convention for C#, all interfaces in the Clarion Library begin with “I” and
are followed by a brief description of the capabilities they provide. The specifics
about how to implement an interface can be found in the documentation for that
interface.

Furthermore, several “template classes” have been provided that implement parts of
(or even most of) certain interfaces. For example:

 The Rule class fully implements the ITracksMatchStatistics interface.

 The TrainableImplicitComponent class implements parts of the
ITrainable interface.

 The ReinforcementTrainableImplicitComponent and
ReinforcementTrainableBPNetwork classes implement parts of the
ITracksMatchStatistics, IReinforcementTrainable, and
IExtractsRules interfaces.

 Etc.

Hopefully, at this point, you are becoming excited about all of the possibilities for
customization that are available. One of the advantages of working with the Clarion

 5

Library, is that you do not need to feel restrained by what has been provided to you
“in-the-box.” For example, if you don’t want to use a 3-layer neural network that
implements backpropagation, then you can write your own 3-layer neural network
by extending the NeuralNetwork class (in the Clarion.Framework.Templates class).
Then you could use whatever learning algorithm you would like by implementing
the ITrainable interface. Suppose you don’t need a hidden layer or you want to
implement a 2-layer recurrent neural network. You could do this by extending the
ImplicitComponent class and implementing whatever capabilities (i.e., interfaces)
you wish for your network to have. The possibilities for customization are almost
limitless!

So now that we have laid-out the groundwork, we are ready to start building some
custom components (and drives).

How to Implement a Custom Component

The Clarion Library has been designed to allow for a maximal amount of
customization while still maintaining an interaction that is straightforward and
congruent with the conception of the Clarion theory. This being said, we encourage
users to explore and expand-upon the foundation that has been developed and
made available within the Clarion Library.

As a means of aiding customization, we have created several “template classes”
(found within the Clarion.Framework.Templates namespace) that can you can build-
upon to create your own customized internal (i.e., function) components.

Requirements for Implementing a Custom Component

First, there are three things that ALL components MUST have:

1. A “Factory” class that can be used by the AgentInitializer class to
generate the component

2. A “Parameters” class that stores any parameters that may be “fine tuned” to
improve the performance of your component

3. A “Commit” method (which “wires-in” the component after it has been setup
and makes it “immutable” to an extent) and a “Retract” method (which
removes the component from operation and makes it editable again).

So let’s start by looking at how to build a factory for your component.

Implementing a “Factory”

To begin, your factory class MUST implement one of the following generic factory
interfaces:

 IimplicitComponentFactory<T> if you intend for your component to be
an ImplicitComponent

 IActionRuleFactory<T> if you intend for your component to be an
ActionRule

 6

 IAssociativeRuleFactory<T> if you intend for your component to an
AssociativeRule

 IDriveFactory<T> if you intend for your component to be a Drive

For all of the above interfaces, the generic <T> indicator specifies the type of
component that the factory will create (i.e., the class name of your component).

As a standard practice, it is usually a good idea to simply define your factory class as
a “nested class” inside of your component and to create a single static instance of
that factory that can be called statically from your component. This is how the
factory class is implemented for the “built-in” components in the Clarion Library.

Let’s suppose, for the sake of demonstration, that you wanted to create a custom
implicit component. If you were to follow the standard convention, your code should
look something like this:

public class SomeCustomComponent : ImplicitComponent
{
 public class SomeCustomComponentFactory :
 IimplicitComponentFactory<SomeCustomComponent>
 {
 public SomeCustomComponent Generate(params dynamic[] parameters)
 {

 //Elided code for parsing-out the parameters

 return new SomeCustomComponent();
 }
 }

 protected SomeCustomComponent()
 : base (new
 ImplicitComponentParameters(ImplicitComponent.GlobalParameters)) { }

 private static SomeCustomComponentFactory factory =
 new SomeCustomComponentFactory();

 public static SomeCustomComponentFactory Factory
 {
 get
 {
 return factory;
 }
 }
}

As a rule of thumb, the name of your factory class should simply be the name of your
component with the word “Factory” appended to the end it.

By using the standard convention, if a user wanted to use your component, they
would be able to easily initialize it without having to also know where to find the
factory for your component (and without needing to instantiate an instance of that
factory). For example, suppose someone wanted to initialize your component in the
bottom level of the ACS, the following line would accomplish this:

 7

SomeCustomComponent comp =
 AgentInitializer.InitializeImplicitDecisionNetwork
 (SomeAgent, SomeCustomComponent.Factory);

The agent initializer calls the Generate method from your factory class to generate
an instance of your component and it places that component within the specified
agent at its intended location (for instance, as in the example above, as an implicit
decision network).

Generating a component can be as simple a process as the code above has just
demonstrated, but suppose you need to require that some basic information be
provided in order for your component to be successfully initialized. By leveraging
the combination of the params and dynamic keywords, the Generate method can
also take an arbitrary number of parameters as input. Within your Generate
method, all you have to do is “parse” the parameters list, and “extract” the
information needed by your component (or throw an exception if the required
information was not specified). For example, lets assume that our
SomeCustomComponent class contains a construct called “nodes” and that a user
must specify how many of these “nodes” need to be setup as part of initializing the
component. This requirement can be setup within the Generate method as follows:

public SomeCustomComponent Generate(params dynamic[] parameters)
{

 int numNodes = 0;

 foreach (dynamic p in parameters)
 {
 if (p is int)
 numNodes = (int)p;
 }

 if (numNodes <= 0)
 throw new ArgumentException("You must specify the number of nodes " +
 "(greater than 0) that are to be created in order to initialize " +
 "this component");

 return new SomeCustomComponent(numNodes);
}

...

//The custom component constructor
protected SomeCustomComponent(int numNodes)
 : base (new ImplicitComponentParameters(ImplicitComponent.GlobalParameters))
{
 //Elided initialization code using numNodes
}

Since the initialization parameters, passed into the Generate method, are dynamic,
your Generate method will be responsible for “parsing out” the parameters that
are needed for initializing your component. The method demonstrated in the
example above uses the is operator to correctly assign the parameters based on

http://msdn.microsoft.com/en-us/library/w5zay9db.aspx
http://msdn.microsoft.com/en-us/library/dd264741.aspx

 8

their type. However, this method only works if no two parameters have the same
type. If your component needs more than one parameters of a specific type, then
you should consider using a different method for “parsing” the parameters (e.g.,
require that the parameters be specified in a certain order).

Your Generate method should always either successfully return a new instance of
your component or throw an exception if any of your required parameters are
missing. By throwing these sorts of exceptions in the Generate method, you can
clearly convey to other users the mistakes they have made while trying to initialize
your component. This will also cut down on unforeseen problems that might occur
at runtime due to mistakes during initialization.

In addition to required parameters, you can also specify optional initialization
parameters. For example, by default, all components automatically inherit the
IsEligible method from the ClarionComponent base class. However, the base
constructor for this class has the option for specifying an EligibilityChecker
delegate (located in the Clarion.Framework.Templates namespace) during
initialization. If that delegate is specified, the IsEligible method will use the
delegate method to check the component’s eligibility in lieu of using the default
method. The following code would allow the SomeCustomComponent class to have
that same option:

public SomeCustomComponent Generate(params dynamic[] parameters)
{

 int numNodes = 0;
 EligibilityChecker el = null;

 foreach (dynamic p in parameters)
 {
 if (p is int)
 numNodes = (int)p;
 if (p is EligibilityChecker)
 el = (EligibilityChecker)p;
 }

 if (numNodes <= 0)
 throw new ArgumentException("You must specify the number of nodes " +
 "(greater than 0) that are to be created in order to initialize " +
 "this component");

 return new SomeCustomComponent(numNodes, el);
}

...

//The custom component constructor
protected SomeCustomComponent(int numNodes, EligibilityChecker elChecker = null)
 : base (new ImplicitComponentParameters(ImplicitComponent.GlobalParameters),
 elChecker)
{
 //Elided initialization code
}

 9

The only real difference between optional and required initialization parameters is
whether an exception is thrown. Obviously, your component should operate
correctly regardless of whether a user specifies an optional parameter during
initialization, so there is no need to throw an exception for them.

Expanding on our earlier example, initializing your component (with parameters)
would now look something like this:

SomeCustomComponent comp =
 AgentInitializer.InitializeImplicitDecisionNetwork
 (SomeAgent, SomeCustomComponent.Factory,
 SomeNumberOfNodes, (EligibilityChecker)SomeEligibilityMethod);

Remember, depending on which “template” (or other “built-in” component) you
extend, you will probably want to “parse out” all of the parameters (both required
and optional) for your base class as well. To determine which parameters your base
class needs/wants, consult the documentation of the constructor for that class. In
general, the parameters that have been specified with a default value (in the
signature for the constructor) are optional, and the ones without a default value are
required (with regard to the Generate method as well as in standard C# terms).

The final thing you will need to do in your Generate method is collect together all
of the “factory parameters” that are being used to initialize your component and
store them in FactoryParameters (located in the ClarionComponent base class).
Doing this will allow the system to automatically generate new instances of your
component based off of the configuration of a single other instance. The following
code demonstrates how this would look in the Generate method of our custom
component example:

public SomeCustomComponent Generate(params dynamic[] parameters)
{

 int numNodes = 0;
 EligibilityChecker el = null;

 foreach (dynamic p in parameters)
 {
 if (p is int)
 numNodes = (int)p;
 if (p is EligibilityChecker)
 el = (EligibilityChecker)p;
 }

 if (numNodes <= 0)
 throw new ArgumentException("You must specify the number of nodes " +
 "(greater than 0) that are to be created in order to initialize " +
 "this component");

 List<dynamic> fpars = new List<dynamic>();
 fpars.Add(numNodes);
 if (el != null)
 fpars.Add(el);
 result.FactoryParameters = fpars.ToArray();

 10

 return new SomeCustomComponent(numNodes, el);
}

A good example of where the “factory parameters” are used by the system is in
generating “rule variations” based on a given “refineable rule.” So, for instance, let’s
suppose that our custom component extended RefineableActionRule. By setting
the FactoryParameters in our Generate method, when an instance of our custom
rule is added to the rule store, the system will automatically be able to perform the
refinement process using that rule (by auto-generating variation instances of our
custom component using the specified factory parameters).

At this point, we have covered everything you need to know with regard to setting
up a “factory” for your custom component. Therefore, let’s now turn our attention to
considering how a custom component should handle the “non-initialization”
parameters (i.e., those parameters that can be “fine tuned” during runtime in order
to improve the overall functioning of a component).

Implementing a “Parameters” class

Recall that, back in the “Intermediate ACS Setup” tutorial, we discussed how
parameters can be accessed and manipulated in the Clarion Library either globally
(by statically calling the GlobalParameters property) or locally (by calling the
Parameters property on a per-instance basis). This feature is accomplished
through the implementation of a “parameters” class, which houses all of the
“tunable” (non-initialization) parameters and provides properties for getting and
setting them. By default, all of the “built-in” components (and subsystems, etc.)
contain two instances of this sort class: a global (static) instance, and a local
instance.

The global parameters act as the “default” settings for all local instances of a
component (or subsystem, etc.). In other words, whenever a local instance is
initialized, the parameters for that instance are set using the values from the global
(static) instance.

It is your prerogative to decide whether you want to implement the global (static)
instance for your custom component (although it recommended). However, your
component MUST at least have a local instance of a parameters class. We decided to
make this a requirement for two reasons:

1. It retains consistency with the rest of the system, which makes it easier for
users to “fine tune” your component

2. It is necessary to do so if you want the manipulation of parameters via
actions3 to operate correctly4

3 See the “Advanced ACS Setup” tutorial for more details on this feature
4 If we didn’t require this then you would have to write your own event handler method for
parameter changes using action events (plus override the ParameterChangeRequestedDelegate
property). This is NOT a simple task and would likely result in your component operating in a way

 11

Of course, if your component does not add any new parameters to those that are
inherited from the base class, then you will not need to implement a new
parameters class. In this case, you can simply instantiate a new instance of the base
class’s parameters class during the initialization of your custom component. In the
example we presented previously, this is accomplished by the following code:

public SomeCustomComponent()
 : base (new
 ImplicitComponentParameters(ImplicitComponent.GlobalParameters)) { }

In all likelihood, however, your component is probably going to have at least a few
“tunable” parameters, so you will probably need to create a new parameters class
for your custom component. So let’s look at the simplest way to create a parameters
class (i.e., “local” only).

Local (per instance) Parameters

As was the convention for the “factory” class, we recommend you implement your
parameters class as a “nested class” within your custom component. This is the
standard convention used throughout the Clarion Library. Using this convention, the
SomeCustomComponent class (from our previous examples), would look something
like this:

public class SomeCustomComponent : ImplicitComponent
{
 public class SomeCustomComponentParameters : ImplicitComponentParameters
 {
 ...
 }

 ... //Elided factory class, etc.
}

As was suggested for the factory class, the name of your parameters class should
simply be the name of your component with the word “Parameters” appended at the
end of it. In addition, your parameters class MUST ALWAYS extend from the
parameters class of the base class of your component (for the example above, this
would be the ImplicitComponentParameters class). This is necessary to ensure
that your parameters class inherits all of the parameters that are needed for the
base class of your component. In addition, as you will see in a moment, the local
instance of your parameters class is stored generically at the bottom of the
inheritance hierarchy (a.k.a., within the ClarionComponent class), so it MUST, at
least, extend from the ClarionComponentParameters class.

Now we can begin filling our parameters class with parameters. In general, it is a
good idea to declare your parameters as private fields within the class and then
use properties to get and set the parameter publicly. We recommend this for two
reasons:

other than was intended whenever action events are used to manipulate the parameters of your
component.

 12

1. All parameters MUST be accessible via a property for the manipulation of
parameters through action events to operate correctly

2. If you are going to implement the global parameters instance, you will need
to use properties

3. It is the recommended convention for accessing fields (as suggested by
Microsoft) when programming in C#

Let’s assume that our SomeCustomComponent class uses a “learning rate”
parameter as part of its learning operation.5 To implement this parameter, we
would do the following:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 private double lr = .1;

 public double LEARNING_RATE
 {
 get
 {
 return lr;
 }
 set
 {
 lr = value;
 }
 }
}

First, notice that we set a value at the top for the learning rate when it is initialized.
This is the “default” value for the parameter (i.e., its value if it is never manipulated).
Second, notice that the property is in all caps and fully names the parameter. This is
done as a matter of style. It is a common practice in programming to specify
“constants” using unambiguous names in all capital letters, but feel free to use
whatever style you would like for naming your parameters. Note, however, that you
will probably want to stick with the common practice here since your parameters
class will also inherit parameters from its base class, and those parameters are
named using this style.

A local instance of your parameters class must be initialized at the same time as
your component. This gives you two options for where you can perform this
initialization: in the Generate method, or in the constructor. The latter is the easier
of the two methods, and would be accomplished as follows (for the simplest
SomeCustomComponent example):

public SomeCustomComponent(): base (new SomeCustomComponentParameters()) { }

Although this options works perfectly well for correctly initializing the local
instance of your parameters class, you will probably prefer to initialize it in the

5 This also means that it would have to implement the ITrainable interface

 13

Generate method. This way, you can add the ability for users to specify their own
instance of your parameters class as an optional initialization parameter for your
component. This capability would be especially useful to a user who has already
tuned an instance of your component and now wants to use the parameter settings
for that instance to initialize additional instances.

Note, however, that in the above case, it would be better to COPY the settings from
the instance of the parameters class specified by the user instead of actually using
that instance as the local parameters instance for the new component. Otherwise,
there is a very good chance that the user could end up with 2 or more instances of
your component that are sharing the same local parameters instance. This would
mean that if the user were to change a parameter for one of those instances, it will
change that parameter for ALL of the instances (which could create problems or
unintended consequences for that user).

To address the above consideration, all of the parameters classes for the “template”
classes (and other “built-in” components) in the Clarion Library contain 2
constructors; one of which takes an instance of a parameters class as input and sets
the value of its parameters using that instance. The following code shows how you
would setup these constructors for your own component’s parameters class:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 ...

 //The constructors for the custom component's parameters class
 public SomeCustomComponentParameters() : base() { }

 public SomeCustomComponentParameters(SomeCustomComponentParameters p)
 : base(p)
 {
 //Set parameters here based on the values of p
 LEARNING_RATE = p.LEARNING_RATE;
 }

 ... //Elided parameter properties
}

The second constructor in the above example will not only copy the values for all of
your parameters, it will also copy the values for all of the parameters inherited from
the parameters class of your component’s base class. You can now use this
constructor in your Generate method to copy the settings from the instance of the
parameters class specified by the user. The following code would accomplishes this:

public SomeCustomComponent Generate(params dynamic[] parameters)
{
 SomeCustomComponentParameters pars = null;

 foreach (dynamic p in parameters)
 {
 if (p is SomeCustomComponentParameters)
 pars = (SomeCustomComponentParameters)p;

 14

 }

 if (pars == null)
 pars = new SomeCustomComponentParameters();
 else
 pars = new SomeCustomComponentParameters(pars);

 List<dynamic> fpars = new List<dynamic>();
 fpars.Add(pars);
 result.FactoryParameters = fpars.ToArray();

 return new SomeCustomComponent(pars);
}

...

//The custom component constructor
public SomeCustomComponent(SomeCustomComponentParameters pars) : base (pars) { }

After your component has been initialized, its “local” parameters instance can be
accessed via the Parameters property. However, by default, this property will
return your component’s parameters class in a “down casted” state. For example,
calling the “Parameters” property for an instance of SomeCustomComponent will
return a parameters class instance that is specified as being type
ImplicitComponentParameters, even though it is really of the type
SomeCustomComponentParameters.

As a result, a user would be forced to always manually cast the instance returned by
the Parameters property. This is VERY inconvenient, so to get around the problem,
your component should override the Parameters property and provide the correct
casting for your component’s parameters class. In the SomeCustomComponent class,
this is accomplished by implementing the following:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 ... //Elided parameters class, factory class, constructors, etc.

 public new SomeCustomComponentParameters Parameters
 {
 get
 {
 return (SomeCustomComponentParameters) base.Parameters;
 }
 }
}

Now users of your component will be able to access your parameters without
constantly needing to cast the instance returned by the Parameters property. Your
component should also access its parameters using the Parameters property
whenever it is performing calculations that make use of them. The following code
demonstrates how a user could modify the LEARNING_RATE parameter from our
previous examples:

 15

comp.Parameters.LEARNING_RATE = .5;

At this point, you have learned how to setup a parameters class in its simplest form
(i.e., “local” only). However, we can also setup a parameters class such that it can act
as either a local instance OR a global instance.

Global (static) Parameters

In order to implement global parameters, you need to be aware of some key factors:

1. Every “template” class (and “built-in” component) contains a global
parameters instance

2. Global parameters are implemented using a static (singleton) instance of a
parameters class and are accessed statically using a static property

3. The global parameters instance is specified as being global during the
initialization (i.e., in the constructor) of that instance

4. The global parameters instance is ONLY used during the initialization of a
component as a means for setting the local parameters of that component

5. Global parameter changes can be made at any point along the inheritance
hierarchy

6. Changing a parameter globally at any point along the inheritance hierarchy
will change the value of that parameter for all classes that are “downstream”
from (i.e., the subclasses of) the class where the global parameter change was
initiated

7. The parameters class of a component class should override the properties of
all of the parameters that are inherited from its base classes (i.e., those
classes that are higher-up on the inheritance hierarchy) so that those
parameters can be changed from that point on the inheritance hierarchy
without affecting the “upstream” (or adjacent) classes

Now that we have laid out these factors, we will break each one down to show how
it is implemented.

Factor # 1

Every “template” class (and “built-in” component) contains a global parameters
instance that can be accessed by calling statically calling the GlobalParameters
property. For example, the global parameters for all implicit components can be
accessed as follows:

ImplicitComponent.GlobalParameters

Factor # 2

Global parameters are implemented using a static (singleton) instance of a
parameters class and are accessed statically using a static property. In other words,
to implement global parameters for your custom component, you need to: first,

http://msdn.microsoft.com/en-us/library/ff650849.aspx

 16

setup a static instance of your component’s parameters class as a static field within
your component class; and second, setup a static property to access that static
instance. The following code demonstrates how this might look:

public class SomeCustomComponent : ImplicitComponent
{
 ... //Elided code for the parameters and factory classes

 private static SomeCustomComponentParameters g_p =
 new SomeCustomComponentParameters();

 ... //Elided fields, constructors, methods, properties, etc.

 public static new SomeCustomComponentParameters GlobalParameters
 {
 get
 {
 return g_p;
 }
 }
}

Note that the GlobalParameters property has been specified using the “new”
qualifier. This is done so that your component’s GlobalParameters property hides
the one that is “inherited” from the base class. 6

Factor # 3

The global parameters instance is specified as being global during the initialization
(i.e., in the constructor) of that instance. This is done because, as some of the later
factors attest, there are special considerations that need to be taken into account
regarding how parameters are changed globally. Therefore, an instance of a
parameters class needs to know whether it is being used as a global instance. This
can be implemented by updating your parameters class’s constructors as follows:

//The constructors for the custom component's parameters class
public SomeCustomComponentParameters(bool isGlobal = false) : base(isGlobal)
{
 //Elided
}

public SomeCustomComponentParameters(SomeCustomComponentParameters p,
 bool isGlobal = false) : base(p, isGlobal)
{
 //Elided
}

The specification as to whether the instance is global gets stored by the bottom-
most base class (i.e., in the ClarionComponentParameters class). However, it can

6 Technically, classes don’t “inherit” static members from their base classes, even though static base
class members can be called statically from a subclass. As a result of this, if we didn’t create a new
GlobalParameters property, then calling that property statically from SomeCustomComponent
would actually return the global parameters instance from ImplicitComponent.

 17

be retrieved using the IsGlobal property that is inherited from
ClarionComponentParameters. With the above changes, initializing the global
instance of your parameters class actually changes to:

private static SomeCustomComponentParameters g_p =
 new SomeCustomComponentParameters(true);

Factor # 4

The global parameters instance is ONLY used during the initialization of a
component as a means for setting the local parameters of that component. The
global parameters instance should NEVER be used as part of the actual operation of
the component. If you were to use a global parameter instead of a local parameter to
perform calculations in your component, then it would make irrelevant any
parameter changes that a user may wish to perform for a specific instance of your
component. You should never assume that a user of your component will only want
to make parameters changes for ALL instances of your component at the same time.
Therefore, do NOT use the global parameter instance except to initialize the local
parameters for an instance of your component.

In order to initialize a local parameters instance using the global parameters, you
must first recall that there are two options for initializing local parameters class
instances. The following lines of code demonstrate how you could initialize a local
parameters instance using the global parameters instance via either option:

//Option #1 – In the constructor of the custom component
public SomeCustomComponent():
 base (new
 SomeCustomComponentParameters(SomeCustomComponent.GlobalParameters)) { }

//Option #2 – In the “Generate” method of the custom component factory
public SomeCustomComponent Generate(params dynamic[] parameters)
{
 //Elided code for parsing the initialization parameters

 if (pars == null)
 pars = new
 SomeCustomComponentParameters(SomeCustomComponent.GlobalParameters);
 else
 pars = new SomeCustomComponentParameters(pars);

 List<dynamic> fpars = new List<dynamic>();
 fpars.Add(pars);
 result.FactoryParameters = fpars.ToArray();

 return new SomeCustomComponent(pars);
}

Factor # 5

Global parameter changes can be made at any point along the inheritance hierarchy.
Suppose, for instance, that you wanted to change the eligibility of all components.

 18

The code below would change the eligibility for anything that extend from
ClarionComponent (i.e., all components):

ClarionComponent.GlobalParameters.ELIGIBILITY = false;

This feature is made possible by event handlers that are located within the
parameters classes at every point within the inheritance hierarchy. These event
handlers handle ParameterChangeRequestedEventArgs. When a global
parameters instance is initialized, its event handler method (which is inherited from
ClarionComponentParameters) is added to the event handlers for all classes that
are above that parameters class in the inheritance hierarchy.

Every parameters class needs to have its own even handler (although it does not
need its own event handler method). The event handler is instantiated as a static
field in your parameters class. For example, the following code sets up the global
parameter change event handler for the SomeCustomComponentParameters class:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 private static event EventHandler<ParameterChangeRequestedEventArgs>
 g_SomeCustomComponent_pEvent;

 //Elided fields, constructors, properties, etc.
}

Feel free to name the event handler whatever you want. However, the standard
convention that is used in the Clarion Library is: g_ClassName_pEvent7.

Now, you can simply add the event handler method (Global_ParameterChanged,
inherited from ClarionComponentParameters) to your event handler. This is
performed in the constructors of your parameters classes. For our
SomeCustomComponentParameters example, the result might look like this:

//The constructors for the custom component's parameters class
public SomeCustomComponentParameters(bool isGlobal = false) : base(isGlobal)
{
 if (IsGlobal)
 g_SomeCustomComponent_pEvent += Global_ParameterChanged;

 //Elided
}

public SomeCustomComponentParameters(SomeCustomComponentParameters p,
 bool isGlobal = false) : base(p, isGlobal)
{
 if (IsGlobal)
 g_SomeCustomComponent_pEvent += Global_ParameterChanged;

 //Elided
}

7 “ClassName” refers to the name of your component, NOT the name of the parameters class

 19

Don’t forget to add the event handler method to your even handler in BOTH
constructors. Otherwise, your event handler could fail to register all of the global
parameter instances.

Factor # 6

Changing a parameter globally at any point along the inheritance hierarchy will
change the value of that parameter for all classes that are “downstream” from (i.e.,
the subclasses of) the class where the global parameter change was initiated.
Whenever a global parameter change occurs, the property not only changes the
value of that parameter for the class where the static parameter change occurred,
but it also initiates a global parameter change event that propagates the parameter
change to every class that derives from that class. For example, in the
LEARNING_RATE property of our SomeCustomComponentParameters class, the
following code would handle both the setting of the parameter as well as the
initiation of the global parameter change event:

public virtual double LEARNING_RATE
{
 get { return lr; }
 set
 {
 if (IsGlobal && !ParameterChange_EventInvoked)
 {
 ParameterChange_EventInvoked = true;
 g_SomeCustomComponent_pEvent(this,
 new ParameterChangeRequestedEventArgs(
 parameters:new ParameterTuple("LEARNING_RATE", value))
 lr = value;
 ParameterChange_EventInvoked = false;
 }
 else
 lr = value;
 }
}

It is important to know a few key things about this code. First, the “if” statement in
the property’s setter introduces a new term: ParameterChange_EventInvoked.
To clarify, this is a static “flag” that is “inherited” from
ClarionComponentParameters and is used to prevent recursion as the parameter
change is propagated downward along the inheritance hierarchy. You MUST set this
flag to true before your event handler’s Invoke method is called and then set it
back to false afterwards. Second, notice that we create something called a
ParameterTuple as part of creating a new
ParameterChangeRequestedEventArgs. The ParameterTuple is a core
construct that we use to couple parameters and values within a single object.
Finally, notice that the string, which is used as part of invoking the global parameter
change event, is the same as the name of the property in which the event is invoked.
This string is used to inform the event handler method as to which parameter is
supposed to be updated for the other (downstream) parameters classes. The event
handler method propagates the parameter change by using Reflection to “lookup”

http://msdn.microsoft.com/en-us/library/f7ykdhsy.aspx

 20

the appropriate property in the other (downstream) parameters classes. Therefore,
it is essential that this string matches the name of the property EXACTLY.8

Factor # 7

The parameters class of a component class should override the properties of all of
the parameters that are inherited from its base classes (i.e., those classes that are
higher-up on the inheritance hierarchy) so that those parameters can be changed
from that point on the inheritance hierarchy without affecting the “upstream” (or
adjacent) classes. If you choose not to override the properties of the parameters that
are inherited from your component’s base classes, then any global changes to those
parameters will initiate a global parameter change event at the level of the base
class.

As a result of this, any other classes that also derived from that base class, would
have their parameter updated as well. This could lead to unintended consequences,
so, in general, it is usually a good idea to override ALL of the properties that are
inherited from the base classes of your parameters class. For example, the
SomeCustomComponentParameters class inherits the ELIBIGILITY property. The
following code demonstrates how to override this property:

public new bool ELIGIBILITY
{
 get { return base.ELIGIBILITY; }
 set
 {
 if (IsGlobal && !ParameterChange_EventInvoked)
 {
 ParameterChange_EventInvoked = true;
 g_SomeCustomComponent_pEvent.Invoke(this,
 new ParameterChangeRequestedEventArgs(
 parameters:new ParameterTuple("ELIGIBILITY", value)));
 base.ELIGIBILITY = value;
 ParameterChange_EventInvoked = false;
 }
 else
 base.ELIGIBILITY = value;
 }
}

Notice that, for the most part, the process for overriding a property is essentially the
same as in your own parameters. This makes sense if your recall that the primary
reason for overriding these properties in the first place is so that your event handler
is invoked instead of the base class’s.

That is everything you need to know in order to setup your parameters class to be
able to act as either a global parameters instance or a local parameters instance. You
should now be able to setup your parameters class, so we will move onto the final
requirement for setting up a custom component.

8 Third, you should specify your properties as being virtual. This way, if someone decides to derive
a new custom component from your component, they will be able to override your properties as well.

 21

Commiting and Retracting

By this point, you should have everything you need in order to implement both the
functionality of your component as well as the “tuning” parameters that are used to
optimize that functionality. However, an agent cannot begin using your component
until it is committed. Once your component has been generated by the agent
initializer, it is placed in a special “initializing” state until it is committed. This is
done in order to help ensure that an agent remains operable once it begins
interacting with the world.

To maintain this operability, your component MUST be put into a “read-only” (i.e.,
immutable) state during the commit process. More specifically, you must “lock
down” those aspects of your component that would break the proper operation of
your component if they were to be altered during runtime (i.e., after the agent is
initialized and starts interacting with the world). For example, adding or removing
nodes from the input, hidden, or output layers of a backpropagation neural network
(i.e., a BPNetwork in the Clarion Library) would break the correct operation of that
network. Therefore, the Commit method of the BPNetwork class locks down (i.e.,
makes “read-only”) those layers.9 You should consult the documentation of the
Commit methods of your component’s base classes to determine what functionality
has already been provided for you.

Note that the “tuning” parameters (i.e., those parameters located in the parameters
class of your component) do not need to be committed (i.e., made immutable) since
changing these parameters will not affect your component’s ability to maintain its
operability.10

By default, your component inherits Commit and Retract methods from the
“template” class (or other component class) from which it is derived. Therefore, if
your component does not add any new functionality that could be broken if
something within your component were to be manipulated during runtime, then
you do not need to implement new Commit and Retract methods. Furthermore,
your component also inherits the IsReadOnly property (from the
ClarionComponent class), so if your component can be made immutable using only
that property, then you may also not need to implement your own Commit and
Retract methods. Otherwise, you MUST override the base class’s Commit (and
possibly Retract) method(s) and add whatever additional commit operations are
needed to make your component immutable.

In addition to handling the “lock down” operations, the Commit method can also be
used to “wire-in” those aspects of a component that cannot be initialized until after
everything else has been setup. In fact, this is actually the more common use of the
Commit method. For example, the weights and thresholds of a 3-layer neural
network cannot be initialized until after the input, hidden, and output layers of that

9 Actually, the Commit method of the ImplicitComponent class provides all of the functionality
needed to “lock” the input & output layers for implicit components
10 Although changing the parameters of your component will alter HOW it operates

 22

network have been completely setup. Therefore, the NeuralNetwork “template”
class puts off the initialization of these pieces until its Commit method is called.

Below is the general outline to use when implementing a Commit method in your
component:

public override void Commit()
{
 if (!CommitLock.IsWriteLockHeld)
 {
 CommitLock.EnterWriteLock();

 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” and “wire-ins” are needed here

 CommitLock.ExitWriteLock();
 }
 else
 {
 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” and “wire-ins” are needed here
 }
}

There are two important points to be made regarding the above outline. First, since
the Commit method may be called asynchronously, you should ALWAYS use the
CommitLock (which is inherited from ClarionComponent) to enter a “write lock”
before performing the operations needed to commit your component.11 In addition,
your Commit method should also make sure to check that the “write lock” is not
already open. If it is, then you can assume that your Commit method is being called
from within the Commit method of a subclass of your component (see details
regarding this below) and that it is safe for your commit operations to be performed
without having to enter (or exit) the write lock.

Second, you should ALWAYS call the base class’s Commit method BEFORE
performing the operations to commit your component. This way, you can make sure
that all of the functionality inherited by your component is made immutable first.
Furthermore, if there is any functionality in your component that cannot be
initialized until after other functionality (that is inherited from the base class) is
initialized, then calling the base class’s Commit method first will ensure that the
base class’s functionality is initialized before your component’s functionality is
initialized.

Moving over to “retracting”, this process is essentially just the reverse operation as
“committing.” In other words, retracting your component will take the component
out of “runtime” operation and place it back in the “initializing” state. Afterward,

11 Don’t forget to exit the “write lock” after your commit operations are finished as well

 23

your component should once again be “editable” (i.e., mutable). The Retract
method allows users to make changes to components “on-the-fly” without damaging
the operability of the overall agent.

It must be noted, however, that the retract feature comes with some drawbacks. For
example, retracting a BPNetwork will allow its layers to be edited. However, since
editing the layers of the network will affect the connections (i.e., the weights and
thresholds) between these layers, the BPNetwork MUST be reinitialized when it is
recommitted. This means that, when a BPNetwork is retracted, ALL learning that
has been performed on that network will be lost. You component should try, as
much as is possible, to preserve its state between retract and recommit phases.
However, if this is not possible, then you need to warn users (in the documentation
of your component’s Retract method) about the consequences of retracting your
component.

The general outline for implementing the Retract method is basically the same as
for the Commit method:

public override void Retract()
{
 if (!CommitLock.IsWriteLockHeld)
 {
 CommitLock.EnterWriteLock();

 //Call the base class’s “Retract” method
 base.Retract();

 //Perform whatever “unlocks” are needed here

 CommitLock.ExitWriteLock();
 }
 else
 {
 //Call the base class’s “Retract” method
 base.Retract();

 //Perform whatever “unlocks” are needed here
 }
}

Using the InitializeOnCommit Property

While retracting usually requires that a component be reinitialized when it is
recommitted, it is possible (and sometimes even necessary) to set up a component
to “overlook” certain parts of the commit process by making use of the
InitializeOnCommit property flag. When this flag is set to true, the Commit
method will perform its initializations as normal. However, if the flag is set to
false, then the process will skip over those initialization steps that are contained
within any if statements that make use of that flag. The following code
demonstrates how the InitializeOnCommit flag could be applied to our general
Commit method outline:

 24

public override void Commit()
{
 if (!CommitLock.IsWriteLockHeld)
 {
 CommitLock.EnterWriteLock();

 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” are needed here

 if (InitializeOnCommit)
 Initialize(); //Perform whatever initializations are needed here

 CommitLock.ExitWriteLock();
 }
 else
 {
 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” are needed here

 if (InitializeOnCommit)
 Initialize(); //Perform whatever initializations are needed here

 }
}

The Commit method still needs to perform all of the appropriate operations to lock
the component (i.e., make it read-only). However, by using the
InitializeOnCommit property, the users of your custom component will have the
choice of whether or not they want the component to be initialized when it is
committed. Note that a user MUST initially commit a component with the
InitializeOnCommit flag turned on. Otherwise, the component will NOT operate
correctly. Additionally, if a component is retracted and any of the inputs or outputs
(etc.) are altered, then the InitializeOnCommit flag MUST also be turned on (for
the same reason as before).

Furthermore, as you will see later, using the InitializeOnCommit flag is necessary
to correctly reload our component using the SerializationPlugin (but we’ll get
into this later).

How to Implement a Custom (Secondary) Drive

In addition to defining the primary drives, the Clarion theory also specifies a thing
called “secondary” (or derived) drives. Conceptually, these drives are the result of a
combination of various primary drives that are typically not an inherently derived
(or evolutionarily evolved) motivation. However, we contend that one could
reasonably argue that, over time, these sorts of drives become independent
motivators of behavior. For example, humans do not inherently have a desire to

 25

smoke cigarettes. Most people choose to smoke in order to attend to certain primary
motivations, such as: affiliation & belongingness (to fit in), similance (because
others are doing it), or possibly avoiding unpleasant stimulus (e.g., to manage
stress). However, as people continue to smoke and their brains become “chemically
addicted”, the “drive to maintain nicotine levels” may, in and of itself, replace the
other (primary) drives as the fundamental motivation for the “smoke a cigarette”
behavior.

The Clarion Library comes prepackaged with all of the primary drives. These drives
will likely be sufficient for most tasks. However, if you find that you need to specify a
secondary drive as part of the setup of your agent, the library provides the abstract
Drive class as a template for creating your own custom (secondary) drive.

Implementing a custom (secondary) drive is very similar to setting up a custom
component (in fact, in many ways, it may even be simpler). To walk you through the
process, we will use the “maintain nicotine levels” example from earlier. Below is a
demonstration of how we could declare the NicotineDrive class:

public class NicotineDrive : Drive
{
 //The custom drive constructor
 protected NicotineDrive(Guid agentID, DriveParameters pars,
 double initialDeficit) : base(agentID, pars, initialDeficit) { }

 ...
}

The first thing to note about setting up a secondary (derived) drive is that we do
NOT need to override any of the methods from the base Drive class. Since the
Drive class is basically just a wrapper for an ImplicitComponent, its primary
function is simply to use that component to calculate the drive strength. Therefore,
if you want to customize the functionality of your secondary (derived) drive, you
will need to implement a custom component for your drive.

Implementing the Nested “Factory” Class

For the next step, as was the case for implementing a custom component, we need to
setup a “factory” class for initializing our custom drive. Note that, in addition to
specifying the agent’s world ID, a parameters class, and the initial deficit for the
drive, the base Drive class’s constructor can also accept two optional parameters:
the drive’s group12, and a DeficitChangeProcessor delegate. The following code
demonstrates how we could setup the NicotineDriveFactory as a “nested class”
within the NicotineDrive:

public class NicotineDrive : Drive
{
 public class NicotineDriveFactory : IDriveFactory<NicotineDrive>
 {
 public NicotineDrive Generate(params dynamic[] parameters)

12 Using the MotivationalSubsystem.DriveGroupSpecifications enumerator

 26

 {
 ... //Elided code for parsing-out the parameters

 }
 }

 protected NicotineDrive(Guid agentID, NicotineDriveParameters pars, double
 initialDeficit, DeficitChangeProcessor deficitChangeMethod = null)
 : base(agentID, pars, initialDeficit, deficitChangeMethod){ }

 ... //Elided drive class code
}

To handle all of the parameters (both optional and required) for initializing the
NicotineDrive, we could set up the Generate method (within the
NicotineDriveFactory) as follows:

public NicotineDrive Generate(params dynamic[] parameters)
{
 Guid aID = Guid.Empty;
 double iD = -1;
 DeficitChangeProcessor d = null;
 NicotineDriveParameters dp = null;
 MotivationalSubsystem.DriveSystemSpecifications ds =
 MotivationalSubsystem.DriveSystemSpecifications.BOTH;
 foreach (dynamic p in parameters)
 {
 if (p is double)
 iD = p;
 else if (p is DeficitChangeProcessor)
 d = p;
 else if (p is NicotineDriveParameters)
 dp = p;
 else if (p is MotivationalSubsystem.DriveSystemSpecifications)
 ds = p;
 else if (p is Guid)
 aID = p;
 }

 if (aID == Guid.Empty)
 throw new ArgumentException("You must specify the agent to which this
 drive is being attached in order to generate the drive");

 if (iD == -1)
 throw new ArgumentException("To initialize a drive, you must specify an
 initial deficit.");

 if (dp == null)
 dp = new NicotineDriveParameters(g_p);
 else
 dp = new NicotineDriveParameters(dp);

 if(dp.DRIVE_SYSTEM == MotivationalSubsystem.
 DriveSystemSpecifications.UNSPECIFIED)
 dp.DRIVE_SYSTEM = ds;

 27

 return new FoodDrive(aID, dp, iD, d);
 }

Once the factory (including the Generate method) class has been setup, we need to
specify the static factory instance and the static Factory property for accessing
it within the NicotineDrive:

public class NicotineDrive : Drive
{
 private static NicotineDriveFactory factory =
 new NicotineDriveFactory();

 ... //Elided factory and parameters classes, constructors, etc.

 public static NicotineDriveFactory Factory
 {
 get
 {
 return factory;
 }
 }
}

Implementing the Nested “Parameters” Class

Just like we did for the custom component, we also need to setup a parameters class
for our custom drive. The following code demonstrates how we would declare the
NicotineDriveParameters class within our NicotineDrive:

public class NicotineDrive : Drive
{
 public class NicotineDriveParameters : DriveParameters
 {
 private static event
 EventHandler<GlobalParameterChangedEventArgs> g_NicotineDrive_pEvent;

 public NicotineDriveParameters(bool isGlobal = false) : base(isGlobal)
 {
 if (IsGlobal)
 g_NicotineDrive_pEvent += Global_ParameterChanged;
 }

 public NicotineDriveParameters(NicotineDriveParameters p,
 bool isGlobal = false) : base(p, isGlobal)
 {
 if (IsGlobal)
 g_NicotineDrive_pEvent += Global_ParameterChanged;
 }

 ... //Elided parameter properties
 }

 ... //Elided factory class, etc.

 28

}

Unlike a custom component, however, we will likely NOT need to define any new
parameters for our custom drive. This is the case because we do not alter the
functionality of the drive itself (by overriding its methods). Therefore, we also do
not need to define new parameters for our drive. This being said, though, you will
still probably want to create a parameters class for your custom drive in order to
handle global (static) parameter changes for all of the parameters that are
inherited from the base Drive class. For our NicotineDriveParameters example,
the following code demonstrates how we might accomplish creating new parameter
properties at the NicotineDrive level of the inheritance hierarchy:

public new double DEFICIT_CHANGE_RATE
{
 get { return base.DEFICIT_CHANGE_RATE; }
 set
 {
 if (IsGlobal && !ParameterChange_EventInvoked)
 {
 ParameterChange_EventInvoked = true;
 g_NicotineDrive_pEvent.Invoke(this,
 new ParameterChangeRequestedEventArgs(
 parameters:new ParameterTuple("DEFICIT_CHANGE_RATE", value)));
 base.DEFICIT_CHANGE_RATE = value;
 ParameterChange_EventInvoked = false;
 }
 else
 base.DEFICIT_CHANGE_RATE = value;
 }
}

public new double DRIVE_GAIN
{
 ... //Same as above, except for the DRIVE_GAIN parameter
}

public new double BASELINE
{
 ... //Same as above, except for the BASELINE parameter
}

Once the parameters classes is set up, our final step is to specify properties within
the NicotineDrive for the global (static) parameters and local parameters
instances. This can be accomplish by doing the following:

public class NicotineDrive : Drive
{
 private static NicotineDriveParameters g_p =
 new NicotineDriveParameters(true);

 ... //Elided factory and parameters classes, constructors, etc.

 29

 public static new NicotineDriveParameters GlobalParameters
 {
 get { return g_p; }
 }

 public new NicotineDriveParameters Parameters
 {
 get { return (NicotineDriveParameters) base.Parameters; }
 }
}

You should now have all of the information you need to implement a custom
(secondary) drive within the Clarion Library. In the following (final) section of this
guide, we will talk about how you can setup your drive (or custom component) so
that it can be loaded and unloaded using serialization.

Serializing a Custom Component (or Drive)

The final step when implementing a custom component (or drive for that matter) is
to make your component serializable. This step is optional, however, you should
note that all of the “built-in” objects (including both descriptive and functional
objects) throughout the Clarion Library are serializable. This has been done in order
to provide you with a means for loading and unloading both descriptive objects (i.e.,
those objects contained within the World) as well as functional objects (i.e., all of the
agents’ internals). This feature is implemented by leveraging attributes (and in
particular the DataContract and DataMember serialization attributes). By making
your component serializable, users will be able to use the library’s built-in
SerializationPlugin13 (or C#’s DataContractSerializer) to load and unload
your custom component (or drive).

The process of implementing the DataContract and DataMember serialization
attributes is actually fairly simple and straightforward. In fact, Microsoft’s MSDN API
resource for the DataContractSerializer already provides an excellent
explanation for how and when to make use of these attributes, so we will forgo the
particulars in this tutorial. Instead, in the following subsections, we will use the
SomeCustomComponent class that we set up earlier to demonstrate how these
attributes can be applied to a component (or drive).

Specifying the System.Runtime.Serialization Resource

Before we describe the process for making our components serializable, you should
be aware that all of the serialization mechanisms that we discuss in this document
are defined within C#’s System.Runtime.Serialization assembly. This assembly is
usually not included as part of the default libraries that get loaded when a project is
created. Therefore, you will likely need to manually specify this assembly as a
resource in order to setup the serialization capabilities for your component.

13 See the “Using Plugins” tutorial in the “Features & Plugins” section of the “Tutorials” folder

http://msdn.microsoft.com/en-us/library/ms233843.aspx
http://msdn.microsoft.com/en-us/library/z0w1kczw%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datamemberattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractserializer.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractserializer.aspx

 30

To use the System.Runtime.Serialization assembly, we must add it as a resource to
our project. Accomplishing this tends to vary based on the development
environment, so you should consult the guides for your particular one if you need
help with how to do this. However, in general, the process usually involves
something like the following:

 Under your project (in the solution explorer), there is a “folder” named
something like “resources” (or possibly “references”). Right-click on that
folder and choose the “add” menu item from the drop-down.

 In the window that comes up, navigate to the “built-in libraries” section and
select the “System.Runtime.Serialization” assembly.

Once you have completed these steps, the System.Runtime.Serialization assembly
should appear in the “resources” (or “references”) section under your project in the
solution explorer. If it is listed there, then you have successfully specified the
System.Runtime.Serialization assembly for your project. The only other step you will
need to do in order to use it is to specify the serialization namespace14 at the top of
the file containing your custom component (with a using clause):

using System.Runtime.Serialization;

The DataContract Attribute

The first thing we need to do is specify that our component is serializable. This is
done by adding the DataContract attribute above the class declaration:

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponent : ImplicitComponent
{

 ... //Elided class code

}

Note that the Namespace parameter for the DataContract attribute has been
assigned the "ClarionLibrary" value. You can feel free to rename this if you’d
like, however, by convention, all of the classes in the Clarion Library are serialized
using this namespace.

The DataContract attribute needs to be specified for all of the classes that we want
to be serialized. Therefore, since we will likely want to serialize our component’s
parameters, we are going to need to specify this attribute for the
SomeCustomComponentParameters inner class that we setup inside of our
SomeCustomComponent:

14 Also named System.Runtime.Serialization

 31

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponent : ImplicitComponent
{
 [DataContract(Namespace = "ClarionLibrary")]
 public class SomeCustomComponentParameters : ImplicitComponentParameters
 {
 ...
 }

 ... //Elided class code

}

Recall that we also setup a “factory” class (SomeCustomComponentFactory) inside
of our component, however, since this class only contains a single method
(Generate) and is only initialized statically, it does not need to be serialized.
Therefore, we do not need to specify the DataContract attribute for this class.

Specifying the DataContract attribute for the SomeCustomComponent and
SomeCustomComponentParameters classes will indicate to the system that these
classes can be serialized. However, we still need to specify which parts of the class
will be serialized. We do this using the DataMember attribute.

The DataMember Attribute

The next thing we need to do to make our component serializable is to specify the
DataMember attribute for all of the fields whose settings are important for making
sure the component runs correctly when it is “re-serialized” by the system. The
decision as to which fields to include depends on the specifics of the component.
However, in general, you will normally want to serialize any fields that are either
required as part of the initialization process, or are “locked-down” during the
commit process. For instance, in our SomeCustomComponent example, we will want
to serialize the “nodes” that were generated during the initialization of the
component.

Let’s suppose that these “nodes” are of a special Node type and that we store these
nodes using C#’s built-in generic List<T> collection. To serialize our nodes, we
need to add the DataMember attribute above the line where they are declared:

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponent : ImplicitComponent
{
 [DataMember(Name = "Nodes")]
 private List<Node> nodes;

 ... //Elided additional class code
}

This code will indicate to the system that the nodes field should be serialized as part
of our component. Additionally, the Name parameter (within the DataMember
attribute) specifies that the field should be assigned the "Nodes" tag. As a rule of
thumb, you should avoid using spaces for the Name parameter of the DataMember.

 32

This being said, your component will still serialize correctly, however, the XML file
(or stream) that results from serialization will be much cleaner and more readable if
you avoid using spaces.

Continuing on, recall that we also need to serialize all of the parameters for our
component (located in the SomeCustomComponentParameters class). For example,
remember that the SomeCustomComponentParameters class has a “learning rate”
parameter (declared using the lr field). To specify that this parameter should be
serialized, we can do the following:

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 [DataMember(Name = "LearningRate")]
 private double lr = .1;
}

Note that the local parameters instance is stored at the base level of our component
(i.e., in the ClarionComponent class) and has already been setup with the
necessary DataMember attribute (using the "Parameters" tag). Therefore, once we
have specified the DataMember attribute for all of our component’s parameters, the
system will have everything it needs to serialize the local instance of the
SomeCustomComponentParameters class.

If you recall, from the “Using Plugins” tutorial in the section on how to use the
SerializationPlugin, when a component is reloaded (i.e., deserialized), it is
automatically recommitted. Of course, you likely will NOT want your component to
reinitialize itself when it is recommitted. With this in mind, as part of the
serialization process, the SerializationPlugin sets the value of the
InitializeOnCommit parameter to false. This is done so that when the
component is deserialized, it can be recommitted without losing any of its settings.
Remember that earlier in this tutorial we explained how to setup the Commit
method of your custom component using the InitializeOnCommit property flag
so that the process will skip the initialization steps. If your custom component is
going to be serializable, you will need to make sure you use this flag in the Commit
method of your component in order to avoid the loss of any settings following the
deserialization process when using the SerializationPlugin.

At this point, let’s take a moment to discuss some pre and post serialization and
deserialization customizations that are available.

Pre/Post Serialization and Deserialization Attributes

As part of the serialization process, C# provides several attributes that you can
specify in conjunction with methods that the system will use to perform any
operations that may be necessary prior to or following the loading or unloading of a
component. These attributes include: OnSerializing, OnSerialized,
OnDeserializing, OnDeserialized.

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializedattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.ondeserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.ondeserializedattribute.aspx

 33

To implement a method for performing pre or post serialization or deserialization,
we will first need to specify the appropriate attribute above the declaration for the
method that we wish to perform these operations. The code below demonstrates
how we might setup a method to handle the post deserialization processes:

[OnDeserialized]
void CompleteDeserialization(StreamingContext sc)
{
 ... //Elided post deserialization code
}

The most common place where we need to implement one of these methods is in the
parameters class for our custom component. Specifically, within the parameters
class, we need to set up a method that will reregister the global parameters instance
to our “global parameter change” event handler. To accomplish this, for our
SomeCustomComponent example, we could do the following (within the
SomeCustomComponentParameters class):

[OnDeserialized]
void CompleteDeserialization(StreamingContext sc)
{
 if (IsGlobal)
 {
 g_SomeCustomComponent_pEvent += Global_ParameterChanged;
 }
}

Note that the specifics as to the sorts of things that should be performed within the
pre or post serialization or deserialization methods depends on the particulars of
the class. So, at this point, we will not be able to delve into this topic any further.
However, if you run into problems setting up a pre or post serialization or
deserailzation method within your custom component, drive, or parameters class,
then we suggest that you consult Microsoft’s MSDN API resources or search the
Internet for additional help.15

Serializing the Global (static) Parameters

First, we should mention is that static fields are NOT serialized as part of the
process for serializing a class. Given this, there is no reason for us to specify the
DataMember attribute above the global (static) parameters instance declaration
as it will have no effect.16 This being said, however, there is another way for us to
setup our component so that it can still serialize and deserialize the global
parameters instance. Specifically, we can create a private property that gets and
sets the global (static) parameters instance and then specify the DataMember
attribute for that property. By doing this, the global parameters instances (including
the global parameters for all base classes) for our component will also be serialized.

15 You can also contact us at clarion.support@gmail.com for assistance once you have exhausted all
other avenues. However, if you do decide to contact us, then please provide clear details regarding
the exact nature of the issues you are having.
16 Although it certainly will not break anything either

mailto:clarion.support@gmail.com

 34

The following code demonstrates how we might setup this “global serialization
property” for the SomeCustomComponent example:

[DataMember(Name = "GlobalParametersInstance")]
private SomeCustomComponentParameters GoalParametersSerialization
{
 get
 {
 return g_p;
 }
 set
 {
 g_p = value;
 }
}

We should note here that, by using this method for serializing the global parameters,
all of the individual instances of your component will also offload a copy of the
global parameters instance when they are serialized. As a result, every time we
reload an instance of our component, the global parameters instances (including the
global parameters instances for the component’s base classes) will be replaced
(which effects ALL instances of the component). Therefore, as we mentioned in the
tutorial for the SerializationPlugin17, you need to make sure that you perform
ALL deserialization BEFORE making changes to ANY global (static) parameters.

You should now have everything you need in order to implement your own custom
components within the Clarion Library. However, as always, if you have any
questions, want to submit a bug, or make a feature request, please feel free to post
on our message boards (http://www.clarioncognitivearchitecture.com) or email us
at clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

17 See the “Using Plugins” tutorial in the “Features & Plugins” section of the “Tutorials” folder

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

	A Brief Note Before You Begin
	Getting Started
	Terms of Use
	Tutorial Table of Contents
	Setting Up & Using the ACS
	Intermediate ACS Setup
	Setting Up & Using the Goal Structure
	Intermediate MS & MCS Setup
	Basic Customization
	Useful Features
	Setting Up & Using the NACS
	Advanced ACS Setup
	Using Plugins
	Advanced Customization Tutorial

