
 1

Advanced Customization Tutorial

© 2013. Nicholas Wilson

Table of Contents

Getting Started ... 1
ACS Structure ... 2
NACS Structure .. 3
MS Structure ... 3
MCS Structure ... 3
Interfaces and Templates .. 4

How to Implement a Custom Component ... 5
Requirements for Implementing a Custom Component ... 5
Implementing a “Factory” .. 5
Implementing a “Parameters” class .. 10

Local (per instance) Parameters... 11
Global (static) Parameters .. 15

Factor # 1 .. 15
Factor # 2 .. 15
Factor # 3 .. 16
Factor # 4 .. 17
Factor # 5 .. 17
Factor # 6 .. 19
Factor # 7 .. 20

Commiting and Retracting ... 21
Using the InitializeOnCommit Property ... 23

How to Implement a Custom (Secondary) Drive .. 24
Implementing the Nested “Factory” Class ... 25
Implementing the Nested “Parameters” Class .. 27

Serializing a Custom Component (or Drive) .. 29
Specifying the System.Runtime.Serialization Resource .. 29
The DataContract Attribute ... 30
The DataMember Attribute .. 31
Pre/Post Serialization and Deserialization Attributes .. 32
Serializing the Global (static) Parameters .. 33

Getting Started

Before we get started on how to build your own custom components and drives,
there is some terminology you must know first:

 Component. The internal (i.e., functional) objects that define how the bottom
and top levels of the subsystems within an agent operate. All components

 2

(and component templates) extend from the ClarionComponent class
(located in the Clarion.Framework.Templates namespace).

 Implicit Component. The bottom level components. All bottom level
components extend from the ImplicitComponent class (located in the
Clarion.Framework.Templates namespace).

 Rule. The top level components. All top level components extend from the
Rule class (located in the Clarion.Framework.Templates namespace).

 Drive. A special component for the bottom level of the MS (more details to
follow). All components intended for the bottom level of the MS extend from
the Drive class (located in the Clarion.Framework.Templates namespace).

 Module. The meta-cognitive subsystem, itself, is not actually a subsystem (per
say) and so it does not technically have a top and bottom level. Instead, the
meta-cognitive subsystem is a container for meta-cognitive “modules”, which
themselves contain a top and bottom level. The meta-cognitive modules act
like “mini” ACSs, containing much of the same capabilities and requirements
as the actual ACS.

 All meta-cognitive modules extend from the MetaCognitiveModule
class (located in the Clarion.Framework.Templates namespace).1

Next, you need to be aware of the specific requirements for each of the subsystems.
The top and bottom levels of the subsystems are not entirely generic. Each
subsystem has its own requirements when it comes to the type of components it will
accept at the bottom and top levels:

ACS Structure

The ACS is defined by the ActionCenteredSubsystem class and has the following
structure:

1. The bottom level of the ACS expects components that extend from the
ImplicitComponent class, therefore any component that is intended for the
bottom level of the ACS MUST extend this class.

2. The top level of the ACS will only accept 3 types of rules: refineable action
rules, IRL rules, and fixed rules. Therefore, any component that is intended
for the top level of the ACS MUST extend either the
RefineableActionRule, IRLRule, or FixedRule classes (located in the
Clarion.Framework namespace)

1 While it is technically possible to implement a custom meta-cognitive module, this is a VERY
advanced (i.e., developer level) customization and requires a deep knowledge of the interworking of
the system. A “Developer Tutorial” may be made available upon request by contacting
clarion.support@gmail.com.

mailto:clarion.support@gmail.com

 3

NACS Structure

The NACS is defined by the NonActionCenteredSubsystem class and has the
following structure:

1. Like the bottom level of the ACS, the bottom level of the NACS also expects
components that extend from the ImplicitComponent class, therefore any
component that is intended for the bottom level of the NACS MUST also
extend this class.

2. The top level of the NACS expects components that extend from the
AssociativeRule class (located in the Clarion.Framework.Templates
namespace), therefore any component that is intended for the top level of the
NACS MUST also extend this class.

MS Structure

The MS is defined by the MotivationalSubsystem class and has the following
structure:

1. As was stated earlier, the bottom level of the MS expects components that
derive from the Drive class. The Drive class is a somewhat special
component since it is really just a wrapper for an implicit component. In fact,
the Drive class itself expects a component that extends from the
ImplicitComponent class.

2. Unlike the other subsystems, the top level of the MS is special in that it does
not actually contain components. Instead, the top level of the MS contains
goals (See the “Setting Up & Using the Goal Structure” tutorial in the “Basic
Tutorials” section of the “Tutorials” folder for details concerning how to setup
and use goals).

MCS Structure

The MCS is defined by the MetaCognitiveSubsystem class, however, all of the
functionality for the MCS is defined by the MetaCognitiveModule classes2 that are
contained within it. These modules have the following structure:

1. The bottom level of a meta-cognitive module is essentially the same as the
bottom level of the ACS in that it expects components that extend from the
ImplicitComponent class. Therefore, any component that is intended for
the bottom level of a meta-cognitive module MUST extend this class.

2. The top level of a meta-cognitive module is similar to the top level of the ACS,
except that it only accepts one type of rule, refineable action rules. Therefore,
and component that is intended for the top level of a meta-cognitive module
MUST extend the RefineableActionRule class.

2 All currently implemented meta-cognitive modules can be found in the
Clarion.Framework.Extensions namespace

 4

Interfaces and Templates

In addition to what we have laid-out so far, you should also be aware of the various
interfaces that are available to you (and located in the Clarion.Framework.Templates
namespace). These interfaces inform the system about the capabilities of your
component. For example:

 Is your component trainable? If so, it needs to implement the ITrainable
interface.

 Can your component be trained using reinforcement learning? If so, it needs to
implement the IReinforcementTrainable interface.

 Does your component use Q-learning? If so, it needs to implement the
IUsesQLearning interface.

 Will your component track positive and negative match statistics? If so, it
needs to implement the ITracksMatchStatistics interface.

 Can your component be deleted by the system (say, via density considerations)?
If so, it needs to implement the IDeletable interface.

 Does your component require the input for the following state to perform
learning? If so, it needs to implement the IHandlesNewInput interface.

 Is your component able to extract rules? If so, it needs to implement the
IExtractsRules interface.

 Can your component be refined (using the RER algorithm)? If so, it needs to
implement the IRefineable interface.

 Etc.

As is the convention for C#, all interfaces in the Clarion Library begin with “I” and
are followed by a brief description of the capabilities they provide. The specifics
about how to implement an interface can be found in the documentation for that
interface.

Furthermore, several “template classes” have been provided that implement parts of
(or even most of) certain interfaces. For example:

 The Rule class fully implements the ITracksMatchStatistics interface.

 The TrainableImplicitComponent class implements parts of the
ITrainable interface.

 The ReinforcementTrainableImplicitComponent and
ReinforcementTrainableBPNetwork classes implement parts of the
ITracksMatchStatistics, IReinforcementTrainable, and
IExtractsRules interfaces.

 Etc.

Hopefully, at this point, you are becoming excited about all of the possibilities for
customization that are available. One of the advantages of working with the Clarion

 5

Library, is that you do not need to feel restrained by what has been provided to you
“in-the-box.” For example, if you don’t want to use a 3-layer neural network that
implements backpropagation, then you can write your own 3-layer neural network
by extending the NeuralNetwork class (in the Clarion.Framework.Templates class).
Then you could use whatever learning algorithm you would like by implementing
the ITrainable interface. Suppose you don’t need a hidden layer or you want to
implement a 2-layer recurrent neural network. You could do this by extending the
ImplicitComponent class and implementing whatever capabilities (i.e., interfaces)
you wish for your network to have. The possibilities for customization are almost
limitless!

So now that we have laid-out the groundwork, we are ready to start building some
custom components (and drives).

How to Implement a Custom Component

The Clarion Library has been designed to allow for a maximal amount of
customization while still maintaining an interaction that is straightforward and
congruent with the conception of the Clarion theory. This being said, we encourage
users to explore and expand-upon the foundation that has been developed and
made available within the Clarion Library.

As a means of aiding customization, we have created several “template classes”
(found within the Clarion.Framework.Templates namespace) that can you can build-
upon to create your own customized internal (i.e., function) components.

Requirements for Implementing a Custom Component

First, there are three things that ALL components MUST have:

1. A “Factory” class that can be used by the AgentInitializer class to
generate the component

2. A “Parameters” class that stores any parameters that may be “fine tuned” to
improve the performance of your component

3. A “Commit” method (which “wires-in” the component after it has been setup
and makes it “immutable” to an extent) and a “Retract” method (which
removes the component from operation and makes it editable again).

So let’s start by looking at how to build a factory for your component.

Implementing a “Factory”

To begin, your factory class MUST implement one of the following generic factory
interfaces:

 IimplicitComponentFactory<T> if you intend for your component to be
an ImplicitComponent

 IActionRuleFactory<T> if you intend for your component to be an
ActionRule

 6

 IAssociativeRuleFactory<T> if you intend for your component to an
AssociativeRule

 IDriveFactory<T> if you intend for your component to be a Drive

For all of the above interfaces, the generic <T> indicator specifies the type of
component that the factory will create (i.e., the class name of your component).

As a standard practice, it is usually a good idea to simply define your factory class as
a “nested class” inside of your component and to create a single static instance of
that factory that can be called statically from your component. This is how the
factory class is implemented for the “built-in” components in the Clarion Library.

Let’s suppose, for the sake of demonstration, that you wanted to create a custom
implicit component. If you were to follow the standard convention, your code should
look something like this:

public class SomeCustomComponent : ImplicitComponent
{
 public class SomeCustomComponentFactory :
 IimplicitComponentFactory<SomeCustomComponent>
 {
 public SomeCustomComponent Generate(params dynamic[] parameters)
 {

 //Elided code for parsing-out the parameters

 return new SomeCustomComponent();
 }
 }

 protected SomeCustomComponent()
 : base (new
 ImplicitComponentParameters(ImplicitComponent.GlobalParameters)) { }

 private static SomeCustomComponentFactory factory =
 new SomeCustomComponentFactory();

 public static SomeCustomComponentFactory Factory
 {
 get
 {
 return factory;
 }
 }
}

As a rule of thumb, the name of your factory class should simply be the name of your
component with the word “Factory” appended to the end it.

By using the standard convention, if a user wanted to use your component, they
would be able to easily initialize it without having to also know where to find the
factory for your component (and without needing to instantiate an instance of that
factory). For example, suppose someone wanted to initialize your component in the
bottom level of the ACS, the following line would accomplish this:

 7

SomeCustomComponent comp =
 AgentInitializer.InitializeImplicitDecisionNetwork
 (SomeAgent, SomeCustomComponent.Factory);

The agent initializer calls the Generate method from your factory class to generate
an instance of your component and it places that component within the specified
agent at its intended location (for instance, as in the example above, as an implicit
decision network).

Generating a component can be as simple a process as the code above has just
demonstrated, but suppose you need to require that some basic information be
provided in order for your component to be successfully initialized. By leveraging
the combination of the params and dynamic keywords, the Generate method can
also take an arbitrary number of parameters as input. Within your Generate
method, all you have to do is “parse” the parameters list, and “extract” the
information needed by your component (or throw an exception if the required
information was not specified). For example, lets assume that our
SomeCustomComponent class contains a construct called “nodes” and that a user
must specify how many of these “nodes” need to be setup as part of initializing the
component. This requirement can be setup within the Generate method as follows:

public SomeCustomComponent Generate(params dynamic[] parameters)
{

 int numNodes = 0;

 foreach (dynamic p in parameters)
 {
 if (p is int)
 numNodes = (int)p;
 }

 if (numNodes <= 0)
 throw new ArgumentException("You must specify the number of nodes " +
 "(greater than 0) that are to be created in order to initialize " +
 "this component");

 return new SomeCustomComponent(numNodes);
}

...

//The custom component constructor
protected SomeCustomComponent(int numNodes)
 : base (new ImplicitComponentParameters(ImplicitComponent.GlobalParameters))
{
 //Elided initialization code using numNodes
}

Since the initialization parameters, passed into the Generate method, are dynamic,
your Generate method will be responsible for “parsing out” the parameters that
are needed for initializing your component. The method demonstrated in the
example above uses the is operator to correctly assign the parameters based on

http://msdn.microsoft.com/en-us/library/w5zay9db.aspx
http://msdn.microsoft.com/en-us/library/dd264741.aspx

 8

their type. However, this method only works if no two parameters have the same
type. If your component needs more than one parameters of a specific type, then
you should consider using a different method for “parsing” the parameters (e.g.,
require that the parameters be specified in a certain order).

Your Generate method should always either successfully return a new instance of
your component or throw an exception if any of your required parameters are
missing. By throwing these sorts of exceptions in the Generate method, you can
clearly convey to other users the mistakes they have made while trying to initialize
your component. This will also cut down on unforeseen problems that might occur
at runtime due to mistakes during initialization.

In addition to required parameters, you can also specify optional initialization
parameters. For example, by default, all components automatically inherit the
IsEligible method from the ClarionComponent base class. However, the base
constructor for this class has the option for specifying an EligibilityChecker
delegate (located in the Clarion.Framework.Templates namespace) during
initialization. If that delegate is specified, the IsEligible method will use the
delegate method to check the component’s eligibility in lieu of using the default
method. The following code would allow the SomeCustomComponent class to have
that same option:

public SomeCustomComponent Generate(params dynamic[] parameters)
{

 int numNodes = 0;
 EligibilityChecker el = null;

 foreach (dynamic p in parameters)
 {
 if (p is int)
 numNodes = (int)p;
 if (p is EligibilityChecker)
 el = (EligibilityChecker)p;
 }

 if (numNodes <= 0)
 throw new ArgumentException("You must specify the number of nodes " +
 "(greater than 0) that are to be created in order to initialize " +
 "this component");

 return new SomeCustomComponent(numNodes, el);
}

...

//The custom component constructor
protected SomeCustomComponent(int numNodes, EligibilityChecker elChecker = null)
 : base (new ImplicitComponentParameters(ImplicitComponent.GlobalParameters),
 elChecker)
{
 //Elided initialization code
}

 9

The only real difference between optional and required initialization parameters is
whether an exception is thrown. Obviously, your component should operate
correctly regardless of whether a user specifies an optional parameter during
initialization, so there is no need to throw an exception for them.

Expanding on our earlier example, initializing your component (with parameters)
would now look something like this:

SomeCustomComponent comp =
 AgentInitializer.InitializeImplicitDecisionNetwork
 (SomeAgent, SomeCustomComponent.Factory,
 SomeNumberOfNodes, (EligibilityChecker)SomeEligibilityMethod);

Remember, depending on which “template” (or other “built-in” component) you
extend, you will probably want to “parse out” all of the parameters (both required
and optional) for your base class as well. To determine which parameters your base
class needs/wants, consult the documentation of the constructor for that class. In
general, the parameters that have been specified with a default value (in the
signature for the constructor) are optional, and the ones without a default value are
required (with regard to the Generate method as well as in standard C# terms).

The final thing you will need to do in your Generate method is collect together all
of the “factory parameters” that are being used to initialize your component and
store them in FactoryParameters (located in the ClarionComponent base class).
Doing this will allow the system to automatically generate new instances of your
component based off of the configuration of a single other instance. The following
code demonstrates how this would look in the Generate method of our custom
component example:

public SomeCustomComponent Generate(params dynamic[] parameters)
{

 int numNodes = 0;
 EligibilityChecker el = null;

 foreach (dynamic p in parameters)
 {
 if (p is int)
 numNodes = (int)p;
 if (p is EligibilityChecker)
 el = (EligibilityChecker)p;
 }

 if (numNodes <= 0)
 throw new ArgumentException("You must specify the number of nodes " +
 "(greater than 0) that are to be created in order to initialize " +
 "this component");

 List<dynamic> fpars = new List<dynamic>();
 fpars.Add(numNodes);
 if (el != null)
 fpars.Add(el);
 result.FactoryParameters = fpars.ToArray();

 10

 return new SomeCustomComponent(numNodes, el);
}

A good example of where the “factory parameters” are used by the system is in
generating “rule variations” based on a given “refineable rule.” So, for instance, let’s
suppose that our custom component extended RefineableActionRule. By setting
the FactoryParameters in our Generate method, when an instance of our custom
rule is added to the rule store, the system will automatically be able to perform the
refinement process using that rule (by auto-generating variation instances of our
custom component using the specified factory parameters).

At this point, we have covered everything you need to know with regard to setting
up a “factory” for your custom component. Therefore, let’s now turn our attention to
considering how a custom component should handle the “non-initialization”
parameters (i.e., those parameters that can be “fine tuned” during runtime in order
to improve the overall functioning of a component).

Implementing a “Parameters” class

Recall that, back in the “Intermediate ACS Setup” tutorial, we discussed how
parameters can be accessed and manipulated in the Clarion Library either globally
(by statically calling the GlobalParameters property) or locally (by calling the
Parameters property on a per-instance basis). This feature is accomplished
through the implementation of a “parameters” class, which houses all of the
“tunable” (non-initialization) parameters and provides properties for getting and
setting them. By default, all of the “built-in” components (and subsystems, etc.)
contain two instances of this sort class: a global (static) instance, and a local
instance.

The global parameters act as the “default” settings for all local instances of a
component (or subsystem, etc.). In other words, whenever a local instance is
initialized, the parameters for that instance are set using the values from the global
(static) instance.

It is your prerogative to decide whether you want to implement the global (static)
instance for your custom component (although it recommended). However, your
component MUST at least have a local instance of a parameters class. We decided to
make this a requirement for two reasons:

1. It retains consistency with the rest of the system, which makes it easier for
users to “fine tune” your component

2. It is necessary to do so if you want the manipulation of parameters via
actions3 to operate correctly4

3 See the “Advanced ACS Setup” tutorial for more details on this feature
4 If we didn’t require this then you would have to write your own event handler method for
parameter changes using action events (plus override the ParameterChangeRequestedDelegate
property). This is NOT a simple task and would likely result in your component operating in a way

 11

Of course, if your component does not add any new parameters to those that are
inherited from the base class, then you will not need to implement a new
parameters class. In this case, you can simply instantiate a new instance of the base
class’s parameters class during the initialization of your custom component. In the
example we presented previously, this is accomplished by the following code:

public SomeCustomComponent()
 : base (new
 ImplicitComponentParameters(ImplicitComponent.GlobalParameters)) { }

In all likelihood, however, your component is probably going to have at least a few
“tunable” parameters, so you will probably need to create a new parameters class
for your custom component. So let’s look at the simplest way to create a parameters
class (i.e., “local” only).

Local (per instance) Parameters

As was the convention for the “factory” class, we recommend you implement your
parameters class as a “nested class” within your custom component. This is the
standard convention used throughout the Clarion Library. Using this convention, the
SomeCustomComponent class (from our previous examples), would look something
like this:

public class SomeCustomComponent : ImplicitComponent
{
 public class SomeCustomComponentParameters : ImplicitComponentParameters
 {
 ...
 }

 ... //Elided factory class, etc.
}

As was suggested for the factory class, the name of your parameters class should
simply be the name of your component with the word “Parameters” appended at the
end of it. In addition, your parameters class MUST ALWAYS extend from the
parameters class of the base class of your component (for the example above, this
would be the ImplicitComponentParameters class). This is necessary to ensure
that your parameters class inherits all of the parameters that are needed for the
base class of your component. In addition, as you will see in a moment, the local
instance of your parameters class is stored generically at the bottom of the
inheritance hierarchy (a.k.a., within the ClarionComponent class), so it MUST, at
least, extend from the ClarionComponentParameters class.

Now we can begin filling our parameters class with parameters. In general, it is a
good idea to declare your parameters as private fields within the class and then
use properties to get and set the parameter publicly. We recommend this for two
reasons:

other than was intended whenever action events are used to manipulate the parameters of your
component.

 12

1. All parameters MUST be accessible via a property for the manipulation of
parameters through action events to operate correctly

2. If you are going to implement the global parameters instance, you will need
to use properties

3. It is the recommended convention for accessing fields (as suggested by
Microsoft) when programming in C#

Let’s assume that our SomeCustomComponent class uses a “learning rate”
parameter as part of its learning operation.5 To implement this parameter, we
would do the following:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 private double lr = .1;

 public double LEARNING_RATE
 {
 get
 {
 return lr;
 }
 set
 {
 lr = value;
 }
 }
}

First, notice that we set a value at the top for the learning rate when it is initialized.
This is the “default” value for the parameter (i.e., its value if it is never manipulated).
Second, notice that the property is in all caps and fully names the parameter. This is
done as a matter of style. It is a common practice in programming to specify
“constants” using unambiguous names in all capital letters, but feel free to use
whatever style you would like for naming your parameters. Note, however, that you
will probably want to stick with the common practice here since your parameters
class will also inherit parameters from its base class, and those parameters are
named using this style.

A local instance of your parameters class must be initialized at the same time as
your component. This gives you two options for where you can perform this
initialization: in the Generate method, or in the constructor. The latter is the easier
of the two methods, and would be accomplished as follows (for the simplest
SomeCustomComponent example):

public SomeCustomComponent(): base (new SomeCustomComponentParameters()) { }

Although this options works perfectly well for correctly initializing the local
instance of your parameters class, you will probably prefer to initialize it in the

5 This also means that it would have to implement the ITrainable interface

 13

Generate method. This way, you can add the ability for users to specify their own
instance of your parameters class as an optional initialization parameter for your
component. This capability would be especially useful to a user who has already
tuned an instance of your component and now wants to use the parameter settings
for that instance to initialize additional instances.

Note, however, that in the above case, it would be better to COPY the settings from
the instance of the parameters class specified by the user instead of actually using
that instance as the local parameters instance for the new component. Otherwise,
there is a very good chance that the user could end up with 2 or more instances of
your component that are sharing the same local parameters instance. This would
mean that if the user were to change a parameter for one of those instances, it will
change that parameter for ALL of the instances (which could create problems or
unintended consequences for that user).

To address the above consideration, all of the parameters classes for the “template”
classes (and other “built-in” components) in the Clarion Library contain 2
constructors; one of which takes an instance of a parameters class as input and sets
the value of its parameters using that instance. The following code shows how you
would setup these constructors for your own component’s parameters class:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 ...

 //The constructors for the custom component's parameters class
 public SomeCustomComponentParameters() : base() { }

 public SomeCustomComponentParameters(SomeCustomComponentParameters p)
 : base(p)
 {
 //Set parameters here based on the values of p
 LEARNING_RATE = p.LEARNING_RATE;
 }

 ... //Elided parameter properties
}

The second constructor in the above example will not only copy the values for all of
your parameters, it will also copy the values for all of the parameters inherited from
the parameters class of your component’s base class. You can now use this
constructor in your Generate method to copy the settings from the instance of the
parameters class specified by the user. The following code would accomplishes this:

public SomeCustomComponent Generate(params dynamic[] parameters)
{
 SomeCustomComponentParameters pars = null;

 foreach (dynamic p in parameters)
 {
 if (p is SomeCustomComponentParameters)
 pars = (SomeCustomComponentParameters)p;

 14

 }

 if (pars == null)
 pars = new SomeCustomComponentParameters();
 else
 pars = new SomeCustomComponentParameters(pars);

 List<dynamic> fpars = new List<dynamic>();
 fpars.Add(pars);
 result.FactoryParameters = fpars.ToArray();

 return new SomeCustomComponent(pars);
}

...

//The custom component constructor
public SomeCustomComponent(SomeCustomComponentParameters pars) : base (pars) { }

After your component has been initialized, its “local” parameters instance can be
accessed via the Parameters property. However, by default, this property will
return your component’s parameters class in a “down casted” state. For example,
calling the “Parameters” property for an instance of SomeCustomComponent will
return a parameters class instance that is specified as being type
ImplicitComponentParameters, even though it is really of the type
SomeCustomComponentParameters.

As a result, a user would be forced to always manually cast the instance returned by
the Parameters property. This is VERY inconvenient, so to get around the problem,
your component should override the Parameters property and provide the correct
casting for your component’s parameters class. In the SomeCustomComponent class,
this is accomplished by implementing the following:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 ... //Elided parameters class, factory class, constructors, etc.

 public new SomeCustomComponentParameters Parameters
 {
 get
 {
 return (SomeCustomComponentParameters) base.Parameters;
 }
 }
}

Now users of your component will be able to access your parameters without
constantly needing to cast the instance returned by the Parameters property. Your
component should also access its parameters using the Parameters property
whenever it is performing calculations that make use of them. The following code
demonstrates how a user could modify the LEARNING_RATE parameter from our
previous examples:

 15

comp.Parameters.LEARNING_RATE = .5;

At this point, you have learned how to setup a parameters class in its simplest form
(i.e., “local” only). However, we can also setup a parameters class such that it can act
as either a local instance OR a global instance.

Global (static) Parameters

In order to implement global parameters, you need to be aware of some key factors:

1. Every “template” class (and “built-in” component) contains a global
parameters instance

2. Global parameters are implemented using a static (singleton) instance of a
parameters class and are accessed statically using a static property

3. The global parameters instance is specified as being global during the
initialization (i.e., in the constructor) of that instance

4. The global parameters instance is ONLY used during the initialization of a
component as a means for setting the local parameters of that component

5. Global parameter changes can be made at any point along the inheritance
hierarchy

6. Changing a parameter globally at any point along the inheritance hierarchy
will change the value of that parameter for all classes that are “downstream”
from (i.e., the subclasses of) the class where the global parameter change was
initiated

7. The parameters class of a component class should override the properties of
all of the parameters that are inherited from its base classes (i.e., those
classes that are higher-up on the inheritance hierarchy) so that those
parameters can be changed from that point on the inheritance hierarchy
without affecting the “upstream” (or adjacent) classes

Now that we have laid out these factors, we will break each one down to show how
it is implemented.

Factor # 1

Every “template” class (and “built-in” component) contains a global parameters
instance that can be accessed by calling statically calling the GlobalParameters
property. For example, the global parameters for all implicit components can be
accessed as follows:

ImplicitComponent.GlobalParameters

Factor # 2

Global parameters are implemented using a static (singleton) instance of a
parameters class and are accessed statically using a static property. In other words,
to implement global parameters for your custom component, you need to: first,

http://msdn.microsoft.com/en-us/library/ff650849.aspx

 16

setup a static instance of your component’s parameters class as a static field within
your component class; and second, setup a static property to access that static
instance. The following code demonstrates how this might look:

public class SomeCustomComponent : ImplicitComponent
{
 ... //Elided code for the parameters and factory classes

 private static SomeCustomComponentParameters g_p =
 new SomeCustomComponentParameters();

 ... //Elided fields, constructors, methods, properties, etc.

 public static new SomeCustomComponentParameters GlobalParameters
 {
 get
 {
 return g_p;
 }
 }
}

Note that the GlobalParameters property has been specified using the “new”
qualifier. This is done so that your component’s GlobalParameters property hides
the one that is “inherited” from the base class. 6

Factor # 3

The global parameters instance is specified as being global during the initialization
(i.e., in the constructor) of that instance. This is done because, as some of the later
factors attest, there are special considerations that need to be taken into account
regarding how parameters are changed globally. Therefore, an instance of a
parameters class needs to know whether it is being used as a global instance. This
can be implemented by updating your parameters class’s constructors as follows:

//The constructors for the custom component's parameters class
public SomeCustomComponentParameters(bool isGlobal = false) : base(isGlobal)
{
 //Elided
}

public SomeCustomComponentParameters(SomeCustomComponentParameters p,
 bool isGlobal = false) : base(p, isGlobal)
{
 //Elided
}

The specification as to whether the instance is global gets stored by the bottom-
most base class (i.e., in the ClarionComponentParameters class). However, it can

6 Technically, classes don’t “inherit” static members from their base classes, even though static base
class members can be called statically from a subclass. As a result of this, if we didn’t create a new
GlobalParameters property, then calling that property statically from SomeCustomComponent
would actually return the global parameters instance from ImplicitComponent.

 17

be retrieved using the IsGlobal property that is inherited from
ClarionComponentParameters. With the above changes, initializing the global
instance of your parameters class actually changes to:

private static SomeCustomComponentParameters g_p =
 new SomeCustomComponentParameters(true);

Factor # 4

The global parameters instance is ONLY used during the initialization of a
component as a means for setting the local parameters of that component. The
global parameters instance should NEVER be used as part of the actual operation of
the component. If you were to use a global parameter instead of a local parameter to
perform calculations in your component, then it would make irrelevant any
parameter changes that a user may wish to perform for a specific instance of your
component. You should never assume that a user of your component will only want
to make parameters changes for ALL instances of your component at the same time.
Therefore, do NOT use the global parameter instance except to initialize the local
parameters for an instance of your component.

In order to initialize a local parameters instance using the global parameters, you
must first recall that there are two options for initializing local parameters class
instances. The following lines of code demonstrate how you could initialize a local
parameters instance using the global parameters instance via either option:

//Option #1 – In the constructor of the custom component
public SomeCustomComponent():
 base (new
 SomeCustomComponentParameters(SomeCustomComponent.GlobalParameters)) { }

//Option #2 – In the “Generate” method of the custom component factory
public SomeCustomComponent Generate(params dynamic[] parameters)
{
 //Elided code for parsing the initialization parameters

 if (pars == null)
 pars = new
 SomeCustomComponentParameters(SomeCustomComponent.GlobalParameters);
 else
 pars = new SomeCustomComponentParameters(pars);

 List<dynamic> fpars = new List<dynamic>();
 fpars.Add(pars);
 result.FactoryParameters = fpars.ToArray();

 return new SomeCustomComponent(pars);
}

Factor # 5

Global parameter changes can be made at any point along the inheritance hierarchy.
Suppose, for instance, that you wanted to change the eligibility of all components.

 18

The code below would change the eligibility for anything that extend from
ClarionComponent (i.e., all components):

ClarionComponent.GlobalParameters.ELIGIBILITY = false;

This feature is made possible by event handlers that are located within the
parameters classes at every point within the inheritance hierarchy. These event
handlers handle ParameterChangeRequestedEventArgs. When a global
parameters instance is initialized, its event handler method (which is inherited from
ClarionComponentParameters) is added to the event handlers for all classes that
are above that parameters class in the inheritance hierarchy.

Every parameters class needs to have its own even handler (although it does not
need its own event handler method). The event handler is instantiated as a static
field in your parameters class. For example, the following code sets up the global
parameter change event handler for the SomeCustomComponentParameters class:

public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 private static event EventHandler<ParameterChangeRequestedEventArgs>
 g_SomeCustomComponent_pEvent;

 //Elided fields, constructors, properties, etc.
}

Feel free to name the event handler whatever you want. However, the standard
convention that is used in the Clarion Library is: g_ClassName_pEvent7.

Now, you can simply add the event handler method (Global_ParameterChanged,
inherited from ClarionComponentParameters) to your event handler. This is
performed in the constructors of your parameters classes. For our
SomeCustomComponentParameters example, the result might look like this:

//The constructors for the custom component's parameters class
public SomeCustomComponentParameters(bool isGlobal = false) : base(isGlobal)
{
 if (IsGlobal)
 g_SomeCustomComponent_pEvent += Global_ParameterChanged;

 //Elided
}

public SomeCustomComponentParameters(SomeCustomComponentParameters p,
 bool isGlobal = false) : base(p, isGlobal)
{
 if (IsGlobal)
 g_SomeCustomComponent_pEvent += Global_ParameterChanged;

 //Elided
}

7 “ClassName” refers to the name of your component, NOT the name of the parameters class

 19

Don’t forget to add the event handler method to your even handler in BOTH
constructors. Otherwise, your event handler could fail to register all of the global
parameter instances.

Factor # 6

Changing a parameter globally at any point along the inheritance hierarchy will
change the value of that parameter for all classes that are “downstream” from (i.e.,
the subclasses of) the class where the global parameter change was initiated.
Whenever a global parameter change occurs, the property not only changes the
value of that parameter for the class where the static parameter change occurred,
but it also initiates a global parameter change event that propagates the parameter
change to every class that derives from that class. For example, in the
LEARNING_RATE property of our SomeCustomComponentParameters class, the
following code would handle both the setting of the parameter as well as the
initiation of the global parameter change event:

public virtual double LEARNING_RATE
{
 get { return lr; }
 set
 {
 if (IsGlobal && !ParameterChange_EventInvoked)
 {
 ParameterChange_EventInvoked = true;
 g_SomeCustomComponent_pEvent(this,
 new ParameterChangeRequestedEventArgs(
 parameters:new ParameterTuple("LEARNING_RATE", value))
 lr = value;
 ParameterChange_EventInvoked = false;
 }
 else
 lr = value;
 }
}

It is important to know a few key things about this code. First, the “if” statement in
the property’s setter introduces a new term: ParameterChange_EventInvoked.
To clarify, this is a static “flag” that is “inherited” from
ClarionComponentParameters and is used to prevent recursion as the parameter
change is propagated downward along the inheritance hierarchy. You MUST set this
flag to true before your event handler’s Invoke method is called and then set it
back to false afterwards. Second, notice that we create something called a
ParameterTuple as part of creating a new
ParameterChangeRequestedEventArgs. The ParameterTuple is a core
construct that we use to couple parameters and values within a single object.
Finally, notice that the string, which is used as part of invoking the global parameter
change event, is the same as the name of the property in which the event is invoked.
This string is used to inform the event handler method as to which parameter is
supposed to be updated for the other (downstream) parameters classes. The event
handler method propagates the parameter change by using Reflection to “lookup”

http://msdn.microsoft.com/en-us/library/f7ykdhsy.aspx

 20

the appropriate property in the other (downstream) parameters classes. Therefore,
it is essential that this string matches the name of the property EXACTLY.8

Factor # 7

The parameters class of a component class should override the properties of all of
the parameters that are inherited from its base classes (i.e., those classes that are
higher-up on the inheritance hierarchy) so that those parameters can be changed
from that point on the inheritance hierarchy without affecting the “upstream” (or
adjacent) classes. If you choose not to override the properties of the parameters that
are inherited from your component’s base classes, then any global changes to those
parameters will initiate a global parameter change event at the level of the base
class.

As a result of this, any other classes that also derived from that base class, would
have their parameter updated as well. This could lead to unintended consequences,
so, in general, it is usually a good idea to override ALL of the properties that are
inherited from the base classes of your parameters class. For example, the
SomeCustomComponentParameters class inherits the ELIBIGILITY property. The
following code demonstrates how to override this property:

public new bool ELIGIBILITY
{
 get { return base.ELIGIBILITY; }
 set
 {
 if (IsGlobal && !ParameterChange_EventInvoked)
 {
 ParameterChange_EventInvoked = true;
 g_SomeCustomComponent_pEvent.Invoke(this,
 new ParameterChangeRequestedEventArgs(
 parameters:new ParameterTuple("ELIGIBILITY", value)));
 base.ELIGIBILITY = value;
 ParameterChange_EventInvoked = false;
 }
 else
 base.ELIGIBILITY = value;
 }
}

Notice that, for the most part, the process for overriding a property is essentially the
same as in your own parameters. This makes sense if your recall that the primary
reason for overriding these properties in the first place is so that your event handler
is invoked instead of the base class’s.

That is everything you need to know in order to setup your parameters class to be
able to act as either a global parameters instance or a local parameters instance. You
should now be able to setup your parameters class, so we will move onto the final
requirement for setting up a custom component.

8 Third, you should specify your properties as being virtual. This way, if someone decides to derive
a new custom component from your component, they will be able to override your properties as well.

 21

Commiting and Retracting

By this point, you should have everything you need in order to implement both the
functionality of your component as well as the “tuning” parameters that are used to
optimize that functionality. However, an agent cannot begin using your component
until it is committed. Once your component has been generated by the agent
initializer, it is placed in a special “initializing” state until it is committed. This is
done in order to help ensure that an agent remains operable once it begins
interacting with the world.

To maintain this operability, your component MUST be put into a “read-only” (i.e.,
immutable) state during the commit process. More specifically, you must “lock
down” those aspects of your component that would break the proper operation of
your component if they were to be altered during runtime (i.e., after the agent is
initialized and starts interacting with the world). For example, adding or removing
nodes from the input, hidden, or output layers of a backpropagation neural network
(i.e., a BPNetwork in the Clarion Library) would break the correct operation of that
network. Therefore, the Commit method of the BPNetwork class locks down (i.e.,
makes “read-only”) those layers.9 You should consult the documentation of the
Commit methods of your component’s base classes to determine what functionality
has already been provided for you.

Note that the “tuning” parameters (i.e., those parameters located in the parameters
class of your component) do not need to be committed (i.e., made immutable) since
changing these parameters will not affect your component’s ability to maintain its
operability.10

By default, your component inherits Commit and Retract methods from the
“template” class (or other component class) from which it is derived. Therefore, if
your component does not add any new functionality that could be broken if
something within your component were to be manipulated during runtime, then
you do not need to implement new Commit and Retract methods. Furthermore,
your component also inherits the IsReadOnly property (from the
ClarionComponent class), so if your component can be made immutable using only
that property, then you may also not need to implement your own Commit and
Retract methods. Otherwise, you MUST override the base class’s Commit (and
possibly Retract) method(s) and add whatever additional commit operations are
needed to make your component immutable.

In addition to handling the “lock down” operations, the Commit method can also be
used to “wire-in” those aspects of a component that cannot be initialized until after
everything else has been setup. In fact, this is actually the more common use of the
Commit method. For example, the weights and thresholds of a 3-layer neural
network cannot be initialized until after the input, hidden, and output layers of that

9 Actually, the Commit method of the ImplicitComponent class provides all of the functionality
needed to “lock” the input & output layers for implicit components
10 Although changing the parameters of your component will alter HOW it operates

 22

network have been completely setup. Therefore, the NeuralNetwork “template”
class puts off the initialization of these pieces until its Commit method is called.

Below is the general outline to use when implementing a Commit method in your
component:

public override void Commit()
{
 if (!CommitLock.IsWriteLockHeld)
 {
 CommitLock.EnterWriteLock();

 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” and “wire-ins” are needed here

 CommitLock.ExitWriteLock();
 }
 else
 {
 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” and “wire-ins” are needed here
 }
}

There are two important points to be made regarding the above outline. First, since
the Commit method may be called asynchronously, you should ALWAYS use the
CommitLock (which is inherited from ClarionComponent) to enter a “write lock”
before performing the operations needed to commit your component.11 In addition,
your Commit method should also make sure to check that the “write lock” is not
already open. If it is, then you can assume that your Commit method is being called
from within the Commit method of a subclass of your component (see details
regarding this below) and that it is safe for your commit operations to be performed
without having to enter (or exit) the write lock.

Second, you should ALWAYS call the base class’s Commit method BEFORE
performing the operations to commit your component. This way, you can make sure
that all of the functionality inherited by your component is made immutable first.
Furthermore, if there is any functionality in your component that cannot be
initialized until after other functionality (that is inherited from the base class) is
initialized, then calling the base class’s Commit method first will ensure that the
base class’s functionality is initialized before your component’s functionality is
initialized.

Moving over to “retracting”, this process is essentially just the reverse operation as
“committing.” In other words, retracting your component will take the component
out of “runtime” operation and place it back in the “initializing” state. Afterward,

11 Don’t forget to exit the “write lock” after your commit operations are finished as well

 23

your component should once again be “editable” (i.e., mutable). The Retract
method allows users to make changes to components “on-the-fly” without damaging
the operability of the overall agent.

It must be noted, however, that the retract feature comes with some drawbacks. For
example, retracting a BPNetwork will allow its layers to be edited. However, since
editing the layers of the network will affect the connections (i.e., the weights and
thresholds) between these layers, the BPNetwork MUST be reinitialized when it is
recommitted. This means that, when a BPNetwork is retracted, ALL learning that
has been performed on that network will be lost. You component should try, as
much as is possible, to preserve its state between retract and recommit phases.
However, if this is not possible, then you need to warn users (in the documentation
of your component’s Retract method) about the consequences of retracting your
component.

The general outline for implementing the Retract method is basically the same as
for the Commit method:

public override void Retract()
{
 if (!CommitLock.IsWriteLockHeld)
 {
 CommitLock.EnterWriteLock();

 //Call the base class’s “Retract” method
 base.Retract();

 //Perform whatever “unlocks” are needed here

 CommitLock.ExitWriteLock();
 }
 else
 {
 //Call the base class’s “Retract” method
 base.Retract();

 //Perform whatever “unlocks” are needed here
 }
}

Using the InitializeOnCommit Property

While retracting usually requires that a component be reinitialized when it is
recommitted, it is possible (and sometimes even necessary) to set up a component
to “overlook” certain parts of the commit process by making use of the
InitializeOnCommit property flag. When this flag is set to true, the Commit
method will perform its initializations as normal. However, if the flag is set to
false, then the process will skip over those initialization steps that are contained
within any if statements that make use of that flag. The following code
demonstrates how the InitializeOnCommit flag could be applied to our general
Commit method outline:

 24

public override void Commit()
{
 if (!CommitLock.IsWriteLockHeld)
 {
 CommitLock.EnterWriteLock();

 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” are needed here

 if (InitializeOnCommit)
 Initialize(); //Perform whatever initializations are needed here

 CommitLock.ExitWriteLock();
 }
 else
 {
 //Call the base class’s “Commit” method
 base.Commit();

 //Perform whatever “lock downs” are needed here

 if (InitializeOnCommit)
 Initialize(); //Perform whatever initializations are needed here

 }
}

The Commit method still needs to perform all of the appropriate operations to lock
the component (i.e., make it read-only). However, by using the
InitializeOnCommit property, the users of your custom component will have the
choice of whether or not they want the component to be initialized when it is
committed. Note that a user MUST initially commit a component with the
InitializeOnCommit flag turned on. Otherwise, the component will NOT operate
correctly. Additionally, if a component is retracted and any of the inputs or outputs
(etc.) are altered, then the InitializeOnCommit flag MUST also be turned on (for
the same reason as before).

Furthermore, as you will see later, using the InitializeOnCommit flag is necessary
to correctly reload our component using the SerializationPlugin (but we’ll get
into this later).

How to Implement a Custom (Secondary) Drive

In addition to defining the primary drives, the Clarion theory also specifies a thing
called “secondary” (or derived) drives. Conceptually, these drives are the result of a
combination of various primary drives that are typically not an inherently derived
(or evolutionarily evolved) motivation. However, we contend that one could
reasonably argue that, over time, these sorts of drives become independent
motivators of behavior. For example, humans do not inherently have a desire to

 25

smoke cigarettes. Most people choose to smoke in order to attend to certain primary
motivations, such as: affiliation & belongingness (to fit in), similance (because
others are doing it), or possibly avoiding unpleasant stimulus (e.g., to manage
stress). However, as people continue to smoke and their brains become “chemically
addicted”, the “drive to maintain nicotine levels” may, in and of itself, replace the
other (primary) drives as the fundamental motivation for the “smoke a cigarette”
behavior.

The Clarion Library comes prepackaged with all of the primary drives. These drives
will likely be sufficient for most tasks. However, if you find that you need to specify a
secondary drive as part of the setup of your agent, the library provides the abstract
Drive class as a template for creating your own custom (secondary) drive.

Implementing a custom (secondary) drive is very similar to setting up a custom
component (in fact, in many ways, it may even be simpler). To walk you through the
process, we will use the “maintain nicotine levels” example from earlier. Below is a
demonstration of how we could declare the NicotineDrive class:

public class NicotineDrive : Drive
{
 //The custom drive constructor
 protected NicotineDrive(Guid agentID, DriveParameters pars,
 double initialDeficit) : base(agentID, pars, initialDeficit) { }

 ...
}

The first thing to note about setting up a secondary (derived) drive is that we do
NOT need to override any of the methods from the base Drive class. Since the
Drive class is basically just a wrapper for an ImplicitComponent, its primary
function is simply to use that component to calculate the drive strength. Therefore,
if you want to customize the functionality of your secondary (derived) drive, you
will need to implement a custom component for your drive.

Implementing the Nested “Factory” Class

For the next step, as was the case for implementing a custom component, we need to
setup a “factory” class for initializing our custom drive. Note that, in addition to
specifying the agent’s world ID, a parameters class, and the initial deficit for the
drive, the base Drive class’s constructor can also accept two optional parameters:
the drive’s group12, and a DeficitChangeProcessor delegate. The following code
demonstrates how we could setup the NicotineDriveFactory as a “nested class”
within the NicotineDrive:

public class NicotineDrive : Drive
{
 public class NicotineDriveFactory : IDriveFactory<NicotineDrive>
 {
 public NicotineDrive Generate(params dynamic[] parameters)

12 Using the MotivationalSubsystem.DriveGroupSpecifications enumerator

 26

 {
 ... //Elided code for parsing-out the parameters

 }
 }

 protected NicotineDrive(Guid agentID, NicotineDriveParameters pars, double
 initialDeficit, DeficitChangeProcessor deficitChangeMethod = null)
 : base(agentID, pars, initialDeficit, deficitChangeMethod){ }

 ... //Elided drive class code
}

To handle all of the parameters (both optional and required) for initializing the
NicotineDrive, we could set up the Generate method (within the
NicotineDriveFactory) as follows:

public NicotineDrive Generate(params dynamic[] parameters)
{
 Guid aID = Guid.Empty;
 double iD = -1;
 DeficitChangeProcessor d = null;
 NicotineDriveParameters dp = null;
 MotivationalSubsystem.DriveSystemSpecifications ds =
 MotivationalSubsystem.DriveSystemSpecifications.BOTH;
 foreach (dynamic p in parameters)
 {
 if (p is double)
 iD = p;
 else if (p is DeficitChangeProcessor)
 d = p;
 else if (p is NicotineDriveParameters)
 dp = p;
 else if (p is MotivationalSubsystem.DriveSystemSpecifications)
 ds = p;
 else if (p is Guid)
 aID = p;
 }

 if (aID == Guid.Empty)
 throw new ArgumentException("You must specify the agent to which this
 drive is being attached in order to generate the drive");

 if (iD == -1)
 throw new ArgumentException("To initialize a drive, you must specify an
 initial deficit.");

 if (dp == null)
 dp = new NicotineDriveParameters(g_p);
 else
 dp = new NicotineDriveParameters(dp);

 if(dp.DRIVE_SYSTEM == MotivationalSubsystem.
 DriveSystemSpecifications.UNSPECIFIED)
 dp.DRIVE_SYSTEM = ds;

 27

 return new FoodDrive(aID, dp, iD, d);
 }

Once the factory (including the Generate method) class has been setup, we need to
specify the static factory instance and the static Factory property for accessing
it within the NicotineDrive:

public class NicotineDrive : Drive
{
 private static NicotineDriveFactory factory =
 new NicotineDriveFactory();

 ... //Elided factory and parameters classes, constructors, etc.

 public static NicotineDriveFactory Factory
 {
 get
 {
 return factory;
 }
 }
}

Implementing the Nested “Parameters” Class

Just like we did for the custom component, we also need to setup a parameters class
for our custom drive. The following code demonstrates how we would declare the
NicotineDriveParameters class within our NicotineDrive:

public class NicotineDrive : Drive
{
 public class NicotineDriveParameters : DriveParameters
 {
 private static event
 EventHandler<GlobalParameterChangedEventArgs> g_NicotineDrive_pEvent;

 public NicotineDriveParameters(bool isGlobal = false) : base(isGlobal)
 {
 if (IsGlobal)
 g_NicotineDrive_pEvent += Global_ParameterChanged;
 }

 public NicotineDriveParameters(NicotineDriveParameters p,
 bool isGlobal = false) : base(p, isGlobal)
 {
 if (IsGlobal)
 g_NicotineDrive_pEvent += Global_ParameterChanged;
 }

 ... //Elided parameter properties
 }

 ... //Elided factory class, etc.

 28

}

Unlike a custom component, however, we will likely NOT need to define any new
parameters for our custom drive. This is the case because we do not alter the
functionality of the drive itself (by overriding its methods). Therefore, we also do
not need to define new parameters for our drive. This being said, though, you will
still probably want to create a parameters class for your custom drive in order to
handle global (static) parameter changes for all of the parameters that are
inherited from the base Drive class. For our NicotineDriveParameters example,
the following code demonstrates how we might accomplish creating new parameter
properties at the NicotineDrive level of the inheritance hierarchy:

public new double DEFICIT_CHANGE_RATE
{
 get { return base.DEFICIT_CHANGE_RATE; }
 set
 {
 if (IsGlobal && !ParameterChange_EventInvoked)
 {
 ParameterChange_EventInvoked = true;
 g_NicotineDrive_pEvent.Invoke(this,
 new ParameterChangeRequestedEventArgs(
 parameters:new ParameterTuple("DEFICIT_CHANGE_RATE", value)));
 base.DEFICIT_CHANGE_RATE = value;
 ParameterChange_EventInvoked = false;
 }
 else
 base.DEFICIT_CHANGE_RATE = value;
 }
}

public new double DRIVE_GAIN
{
 ... //Same as above, except for the DRIVE_GAIN parameter
}

public new double BASELINE
{
 ... //Same as above, except for the BASELINE parameter
}

Once the parameters classes is set up, our final step is to specify properties within
the NicotineDrive for the global (static) parameters and local parameters
instances. This can be accomplish by doing the following:

public class NicotineDrive : Drive
{
 private static NicotineDriveParameters g_p =
 new NicotineDriveParameters(true);

 ... //Elided factory and parameters classes, constructors, etc.

 29

 public static new NicotineDriveParameters GlobalParameters
 {
 get { return g_p; }
 }

 public new NicotineDriveParameters Parameters
 {
 get { return (NicotineDriveParameters) base.Parameters; }
 }
}

You should now have all of the information you need to implement a custom
(secondary) drive within the Clarion Library. In the following (final) section of this
guide, we will talk about how you can setup your drive (or custom component) so
that it can be loaded and unloaded using serialization.

Serializing a Custom Component (or Drive)

The final step when implementing a custom component (or drive for that matter) is
to make your component serializable. This step is optional, however, you should
note that all of the “built-in” objects (including both descriptive and functional
objects) throughout the Clarion Library are serializable. This has been done in order
to provide you with a means for loading and unloading both descriptive objects (i.e.,
those objects contained within the World) as well as functional objects (i.e., all of the
agents’ internals). This feature is implemented by leveraging attributes (and in
particular the DataContract and DataMember serialization attributes). By making
your component serializable, users will be able to use the library’s built-in
SerializationPlugin13 (or C#’s DataContractSerializer) to load and unload
your custom component (or drive).

The process of implementing the DataContract and DataMember serialization
attributes is actually fairly simple and straightforward. In fact, Microsoft’s MSDN API
resource for the DataContractSerializer already provides an excellent
explanation for how and when to make use of these attributes, so we will forgo the
particulars in this tutorial. Instead, in the following subsections, we will use the
SomeCustomComponent class that we set up earlier to demonstrate how these
attributes can be applied to a component (or drive).

Specifying the System.Runtime.Serialization Resource

Before we describe the process for making our components serializable, you should
be aware that all of the serialization mechanisms that we discuss in this document
are defined within C#’s System.Runtime.Serialization assembly. This assembly is
usually not included as part of the default libraries that get loaded when a project is
created. Therefore, you will likely need to manually specify this assembly as a
resource in order to setup the serialization capabilities for your component.

13 See the “Using Plugins” tutorial in the “Features & Plugins” section of the “Tutorials” folder

http://msdn.microsoft.com/en-us/library/ms233843.aspx
http://msdn.microsoft.com/en-us/library/z0w1kczw%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datamemberattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractserializer.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractserializer.aspx

 30

To use the System.Runtime.Serialization assembly, we must add it as a resource to
our project. Accomplishing this tends to vary based on the development
environment, so you should consult the guides for your particular one if you need
help with how to do this. However, in general, the process usually involves
something like the following:

 Under your project (in the solution explorer), there is a “folder” named
something like “resources” (or possibly “references”). Right-click on that
folder and choose the “add” menu item from the drop-down.

 In the window that comes up, navigate to the “built-in libraries” section and
select the “System.Runtime.Serialization” assembly.

Once you have completed these steps, the System.Runtime.Serialization assembly
should appear in the “resources” (or “references”) section under your project in the
solution explorer. If it is listed there, then you have successfully specified the
System.Runtime.Serialization assembly for your project. The only other step you will
need to do in order to use it is to specify the serialization namespace14 at the top of
the file containing your custom component (with a using clause):

using System.Runtime.Serialization;

The DataContract Attribute

The first thing we need to do is specify that our component is serializable. This is
done by adding the DataContract attribute above the class declaration:

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponent : ImplicitComponent
{

 ... //Elided class code

}

Note that the Namespace parameter for the DataContract attribute has been
assigned the "ClarionLibrary" value. You can feel free to rename this if you’d
like, however, by convention, all of the classes in the Clarion Library are serialized
using this namespace.

The DataContract attribute needs to be specified for all of the classes that we want
to be serialized. Therefore, since we will likely want to serialize our component’s
parameters, we are going to need to specify this attribute for the
SomeCustomComponentParameters inner class that we setup inside of our
SomeCustomComponent:

14 Also named System.Runtime.Serialization

 31

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponent : ImplicitComponent
{
 [DataContract(Namespace = "ClarionLibrary")]
 public class SomeCustomComponentParameters : ImplicitComponentParameters
 {
 ...
 }

 ... //Elided class code

}

Recall that we also setup a “factory” class (SomeCustomComponentFactory) inside
of our component, however, since this class only contains a single method
(Generate) and is only initialized statically, it does not need to be serialized.
Therefore, we do not need to specify the DataContract attribute for this class.

Specifying the DataContract attribute for the SomeCustomComponent and
SomeCustomComponentParameters classes will indicate to the system that these
classes can be serialized. However, we still need to specify which parts of the class
will be serialized. We do this using the DataMember attribute.

The DataMember Attribute

The next thing we need to do to make our component serializable is to specify the
DataMember attribute for all of the fields whose settings are important for making
sure the component runs correctly when it is “re-serialized” by the system. The
decision as to which fields to include depends on the specifics of the component.
However, in general, you will normally want to serialize any fields that are either
required as part of the initialization process, or are “locked-down” during the
commit process. For instance, in our SomeCustomComponent example, we will want
to serialize the “nodes” that were generated during the initialization of the
component.

Let’s suppose that these “nodes” are of a special Node type and that we store these
nodes using C#’s built-in generic List<T> collection. To serialize our nodes, we
need to add the DataMember attribute above the line where they are declared:

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponent : ImplicitComponent
{
 [DataMember(Name = "Nodes")]
 private List<Node> nodes;

 ... //Elided additional class code
}

This code will indicate to the system that the nodes field should be serialized as part
of our component. Additionally, the Name parameter (within the DataMember
attribute) specifies that the field should be assigned the "Nodes" tag. As a rule of
thumb, you should avoid using spaces for the Name parameter of the DataMember.

 32

This being said, your component will still serialize correctly, however, the XML file
(or stream) that results from serialization will be much cleaner and more readable if
you avoid using spaces.

Continuing on, recall that we also need to serialize all of the parameters for our
component (located in the SomeCustomComponentParameters class). For example,
remember that the SomeCustomComponentParameters class has a “learning rate”
parameter (declared using the lr field). To specify that this parameter should be
serialized, we can do the following:

[DataContract(Namespace = "ClarionLibrary")]
public class SomeCustomComponentParameters : ImplicitComponentParameters
{
 [DataMember(Name = "LearningRate")]
 private double lr = .1;
}

Note that the local parameters instance is stored at the base level of our component
(i.e., in the ClarionComponent class) and has already been setup with the
necessary DataMember attribute (using the "Parameters" tag). Therefore, once we
have specified the DataMember attribute for all of our component’s parameters, the
system will have everything it needs to serialize the local instance of the
SomeCustomComponentParameters class.

If you recall, from the “Using Plugins” tutorial in the section on how to use the
SerializationPlugin, when a component is reloaded (i.e., deserialized), it is
automatically recommitted. Of course, you likely will NOT want your component to
reinitialize itself when it is recommitted. With this in mind, as part of the
serialization process, the SerializationPlugin sets the value of the
InitializeOnCommit parameter to false. This is done so that when the
component is deserialized, it can be recommitted without losing any of its settings.
Remember that earlier in this tutorial we explained how to setup the Commit
method of your custom component using the InitializeOnCommit property flag
so that the process will skip the initialization steps. If your custom component is
going to be serializable, you will need to make sure you use this flag in the Commit
method of your component in order to avoid the loss of any settings following the
deserialization process when using the SerializationPlugin.

At this point, let’s take a moment to discuss some pre and post serialization and
deserialization customizations that are available.

Pre/Post Serialization and Deserialization Attributes

As part of the serialization process, C# provides several attributes that you can
specify in conjunction with methods that the system will use to perform any
operations that may be necessary prior to or following the loading or unloading of a
component. These attributes include: OnSerializing, OnSerialized,
OnDeserializing, OnDeserialized.

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializedattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.ondeserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.ondeserializedattribute.aspx

 33

To implement a method for performing pre or post serialization or deserialization,
we will first need to specify the appropriate attribute above the declaration for the
method that we wish to perform these operations. The code below demonstrates
how we might setup a method to handle the post deserialization processes:

[OnDeserialized]
void CompleteDeserialization(StreamingContext sc)
{
 ... //Elided post deserialization code
}

The most common place where we need to implement one of these methods is in the
parameters class for our custom component. Specifically, within the parameters
class, we need to set up a method that will reregister the global parameters instance
to our “global parameter change” event handler. To accomplish this, for our
SomeCustomComponent example, we could do the following (within the
SomeCustomComponentParameters class):

[OnDeserialized]
void CompleteDeserialization(StreamingContext sc)
{
 if (IsGlobal)
 {
 g_SomeCustomComponent_pEvent += Global_ParameterChanged;
 }
}

Note that the specifics as to the sorts of things that should be performed within the
pre or post serialization or deserialization methods depends on the particulars of
the class. So, at this point, we will not be able to delve into this topic any further.
However, if you run into problems setting up a pre or post serialization or
deserailzation method within your custom component, drive, or parameters class,
then we suggest that you consult Microsoft’s MSDN API resources or search the
Internet for additional help.15

Serializing the Global (static) Parameters

First, we should mention is that static fields are NOT serialized as part of the
process for serializing a class. Given this, there is no reason for us to specify the
DataMember attribute above the global (static) parameters instance declaration
as it will have no effect.16 This being said, however, there is another way for us to
setup our component so that it can still serialize and deserialize the global
parameters instance. Specifically, we can create a private property that gets and
sets the global (static) parameters instance and then specify the DataMember
attribute for that property. By doing this, the global parameters instances (including
the global parameters for all base classes) for our component will also be serialized.

15 You can also contact us at clarion.support@gmail.com for assistance once you have exhausted all
other avenues. However, if you do decide to contact us, then please provide clear details regarding
the exact nature of the issues you are having.
16 Although it certainly will not break anything either

mailto:clarion.support@gmail.com

 34

The following code demonstrates how we might setup this “global serialization
property” for the SomeCustomComponent example:

[DataMember(Name = "GlobalParametersInstance")]
private SomeCustomComponentParameters GoalParametersSerialization
{
 get
 {
 return g_p;
 }
 set
 {
 g_p = value;
 }
}

We should note here that, by using this method for serializing the global parameters,
all of the individual instances of your component will also offload a copy of the
global parameters instance when they are serialized. As a result, every time we
reload an instance of our component, the global parameters instances (including the
global parameters instances for the component’s base classes) will be replaced
(which effects ALL instances of the component). Therefore, as we mentioned in the
tutorial for the SerializationPlugin17, you need to make sure that you perform
ALL deserialization BEFORE making changes to ANY global (static) parameters.

You should now have everything you need in order to implement your own custom
components within the Clarion Library. However, as always, if you have any
questions, want to submit a bug, or make a feature request, please feel free to post
on our message boards (http://www.clarioncognitivearchitecture.com) or email us
at clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

17 See the “Using Plugins” tutorial in the “Features & Plugins” section of the “Tutorials” folder

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

