
 1

Setting Up & Using the ACS

© 2013. Nicholas Wilson

Table of Contents

Walkthrough of the Simple Hello World Task .. 1
The using Clause .. 2
Declaring the SimpleHelloWorld Class .. 2
The Main Method... 2
Initializing the World ... 4
Agent Initialization .. 5
Tweaking Parameters ... 7

Running a Simulation (& Continued Walkthrough) ... 8
Initializing the Sensory Information ... 9
Perceiving and Acting .. 10
Processing Outcomes and Delivering Feedback ... 10
Killing an Agent .. 12

Walkthrough of the Simple Hello World Task

In this section, we will go line-by-line through one of the simplest tasks to simulate:
Hello World. This simple task will provide you with the basics for getting up and
running building simulations in Clarion. It should not, however, be considered to be
the definitive method for developing simulating environments (or constructing
agents for that matter). We encourage you to look at all of the samples and consult
the various guides and documentation when building your own simulations. Once
you get comfortable developing simulations, we encourage you to explore the
capabilities of the Clarion Library and use your own creativity when constructing
your models.

To fully convey the point that simulations need not follow any rigid format, the
SimpleHelloWorld simulation is written entirely within a single method (i.e., the
“Main” method). The basic layout for this task is as follows:

 It uses ONLY the ACS with a reinforcement trainable backpropagation
network in the bottom level and RER (Rule Extraction and Refinement)
turned on in order to extract rules based on the reinforcement.

 The goal is for the agent to learn the following:

If someone says “hello” of “goodbye” to me, then I should respond with either
“hello” or “goodbye” respectively.

 2

 At the end of the task, the above statement should be represented as rules in
the top level of the ACS (having been learned via RER).

 Other than knowing the inputs and outputs, the agent should have no a-priori
knowledge of the task dynamics.

So let’s look now at how we would go about setting up this simple task. The first
thing we need to do is add the “Simple Hello World” sample to our project. This is
generally accomplished by simply right-clicking on your project (i.e., the one we
setup in the “Getting Started Guide”) and choosing the “Add Files” option (under the
“Add” menu item). The file name for this task is “HelloWorld-Simple.cs” and it can be
found in the “Simple” folder in the “Samples” section of the Clarion Library package.
Once you have added the file, it should open in the main window of your
development environment. If it does not, you should be able to open it by double-
clicking on it from the Solution Explorer.

The using Clause

In the previous (“Getting Started”) tutorial, we discussed how to add the Clarion
Library as a resource (or reference) for a simulation project. However, if you are
familiar with Java (or maybe Python), then you will already be aware that a resource
library needs to also be signaled within a class file by specifying an inclusion
keyword at the top of a code file (for example, with the import statement in Java).
C# uses the keyword using. The code below lists the basic resources we use for our
example:

using Clarion;
using Clarion.Framework;

The Clarion and Clarion.Framework namespaces are the primary locations for
the majority of the classes you will need when setting up and using a Clarion-based
agent in your simulation. More advanced examples might use additional libraries.

Declaring the SimpleHelloWorld Class

Now that we have signaled the necessary namespaces, we need to specify the initial
declaration for the class that will perform the task:

public class SimpleHelloWorld

This class contains all of the code for my simulating environment, including the
initialization of the world, my agent, and the mechanisms that allow the agent to
interact with the world. Since this is a simple task, we will actually perform all of
these steps within a single (Main) method.

The Main Method

If you are familiar with Java, C, or C++, you know that a method called Main is where
any program begins its execution. In C#, this routine is always spelled with a capital
letter, and must be declared as static void (or static int, if you want to

 3

return an exit value to the operating system). As is usual for Java, C, or C++,
command-line arguments are handled with the string array, args, passed to the
Main method. While this argument is optional, including it is usually the default
behavior in most development environments. In addition, you may find it
convenient to use in some of your simulations.

static void Main(string[] args)
{
 ...
}

We should also note that it is usually a good idea to limit the amount of work that is
performed in the Main method. In practice, this method should initialize its
enclosing class, writing out a couple of progress messages, and call a few methods to
initiate the task. The major work of the simulation should be performed in other
methods such that your Main method is easy to follow and very high-level. This
being said, the Simple Hello World example does not follow this convention.
Remember, for this particular simulation, we simply wish to demonstrate the
simplicity in which simulations can be created. The Clarion Library will still perform
a task correctly even if you use poor programming practices.

The first lines you will see in the Main method are these:

//Initialize the task
Console.WriteLine("Initializing the Simple Hello World Task");

int CorrectCounter = 0;
int NumberTrials = 10000;
int progress = 0;

World.LoggingLevel = TraceLevel.Warning;

TextWriter orig = Console.Out;
StreamWriter sw = File.CreateText("HelloWorldSimple.txt");

This code first sets up some task-specific variables to use for tracking the results of
the task. It also configures C# to output the results to a text file (instead of to the
console window). You do not need to implement any of this within your simulations.
We have merely implemented it this way here so that the console will look nice and
clean when you actually run the simulation.

Notice also that we specify a value for LoggingLevel. The Clarion Library lets you
trace the inner workings of your agents at varying levels of detail. By default, if
logging is turned on, the logging information gets output to “Clarion Library.log”.
However, if you wish to change this location (or if you want additional details on
how logging works within the Clarion Library) see the “Useful Features” guide1.

1 Located in the “Features & Plugins” section of the “Tutorials” folder

 4

Initializing the World

Some amount of initialization of the world itself is needed before we can run our
task. The next lines of code in our demonstration are these:

DimensionValuePair hi = World.NewDimensionValuePair("Salutation", "Hello");
DimensionValuePair bye = World.NewDimensionValuePair("Salutation", "Goodbye");

When building a simulation, the first thing we need to do is describe what the
simulating environment looks like. For example, you will usually want to tell the
World about is the existence of any dimension-value pairs we need for our task. For
our Simple Hello World task, there is one dimension named “Salutation”, and it is
given a value of either “Hello” or “Goodbye.” These DV pairs effectively represent
the simulating environment for this task.

Note that we can refer to these objects as often as we need to as we continue setting
up the simulation by either maintaining links (i.e., pointers) to them within our
simulation, or by calling the “Get” methods that are provided in the World singleton
object. Later, you will see that we can use our descriptive objects to create input
nodes to the agent’s implicit decision network. However, for now, simply note that
these dimension-value pairs can now be considered to exist within the world.

We now need to define the external actions that the agent will be able to perform (in
this case “Hello” and “Goodbye”) when presented with salutation inputs. The
NewExternalActionChunk method accomplishes this:

ExternalActionChunk sayHi = World.NewExternalActionChunk("Hello");
ExternalActionChunk sayBye = World.NewExternalActionChunk("Goodbye");

Here, our action chunks are about the simplest possible: indicating either
responding “Hello” or “Goodbye”, which is all we need for this task. Note, however,
that in practice, action chunks can be made as complex as required (since they are in
fact chunks2).

With these essential initializations out of the way, the simulating environment has
essentially been set up. There are, of course, more complex aspects that can
potentially be set up here, but we will leave those alone for now and address them
in the other, more advanced, guides. At this point, it is time to initialize our agent
(whom we will call John):

//Initialize the Agent
Agent John = World.NewAgent("John");

John is initialized within the world just like any other descriptive object, because
technically John is just another object in the world. This is accomplished by calling
the NewAgent method. Note that we also give the agent its name at this point, which
is the string parameter "John" passed to NewAgent. Also note that this name (or

2 Chunks are a well-established representational concept that contain arbitrarily large collections of
dimension-value pairs

 5

“label” when we are creating goal/action/declarative chunks) is optional and is only
needed if you later want to “retrieve”, or Get, the agent (or chunk) back from the
World.

To this end, keep in mind that since the names/labels are optional, they can be
assigned to multiple agents/chunks. In other words, it is completely possible to have
more than one agent in the world named John. The system will not break if you
want to give your (non dimension-value pair) world objects the same name/label.
However, if you choose to do this, it will limit your ability to retrieve the objects
from the World using the Get...(by_name_or_label) methods. In particular,
when multiple world objects (of the same object type) have the same name/label,
the Get methods cannot guarantee that the object that is retrieved will be the object
you intended.

With that in mind, if you plan to build a simulating environment with multiple
agents, it is very important to make sure you segregate your agent initialization
from your descriptive object declaration. Otherwise, you could inadvertently create
multiple “copies” of the same object and potentially cause major problems with the
operation of your task (if you also use the World.Get... methods).

Moving back to our example, we have now created an “empty” agent. We say it is
empty, because it does not know anything about those DV pairs and action chunks
that were set up earlier, nor does it contain any functional mechanisms with which
to interact with the world. Therefore, we need to finish setting up our agent, John.

Agent Initialization

In this task, the only functional object we need to initialize ahead of time is an
Implicit Decision Network (IDN) in the bottom level of the ACS. To set up this
network, we will initialize a backpropagation network. More specifically we use a
simplified Q-learning backpropagation network. This line demonstrates how to
accomplish this initialization:

SimplifiedQBPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
 (John, SimplifiedQBPNetwork.Factory);

The network type that we use for the implicit decision network in this simulation is
a SimplifiedQBPNetwork, one of several artificial neural network components
located in the Clarion.Framework namespace of the Clarion Library. We generate
this network (and associate it with agent John) through the AgentInitializer
(located, as with the World class, within the root Clarion namespace).

Note again that the AgentInitializer is the primary means by which we attach
the myriad of internal functional objects (e.g., implicit components, drives, meta-
cognitive modules, etc.) to a Clarion agent. Along with the World class, the agent
initializer represents one of the primary foundational objects for interacting with a
Clarion agent within a simulated task environment.

As we mentioned earlier, for the simple Hello World task, all we need is an implicit
decision network (or IDN) in the bottom-level of the ACS, so we call the

 6

InitializeImplicitDecisionNetwork method to generate the neural network.
To initialize the IDN, we pass two items to the initializer method in the
AgentInitializer:

 The agent (John, in this case) to which the network is to be attached

 A factory that will be used to generate the network we want

Note that this method will place the network within John in an “initializing” state
(more on this in a moment). Since a complex agent could literally have dozens or
even hundreds of special-purpose networks, we have implemented a standard
factory pattern, which allows for you to specify any type of internal object you
desire (including customized ones of your own creation3). Here, we want to use a
SimplifiedQBPNetwork so we pass in the factory that the system will use to
generate this network.

For all of the internal functional objects in the Clarion Library (as specified by the
Clarion theory), a factory has already been provided for you and can be accessed by
statically invoking the Factory property. In our current example, specifying
SimplifiedQBPNetwork.Factory will provide the factory for creating the
SimplifiedQBPNetwork in the bottom level of the ACS. Note here that we can also
pass along any number of parameters to the factory. In this particular example, we
do not need to do so, however, you will see other examples as you go along with
these tutorials where such parameters are required. For the “built-in” functional
objects, lists for both the required and optional parameters can be found in the
documentation.

The InitializeImplicitDecisionNetwork returns an implicit component (of
the type that is specified by the factory). For our example, we are initializing a
SimplifiedQBPNetwork, and have assigned it to the net variable. This net can be
considered as being part of our agent, John. In other words, the network has not
only been generated by calling the initialize method, but it has also been attached to
the agent that was specified when the method was called. This means that the
network belongs to the agent and cannot be used by any other agent.

In this simple example, we are creating only one neural network component (as an
IDN in the bottom-level of the ACS). In more elaborate simulations, you will, no
doubt, call several other methods in AgentInitializer many times in order to
generate all of the components you will need for constructing your agents. For
details on initializing functional objects (within the other “agent internals
containers”) consult the documentation for the various “Initialize” methods in
the AgentInitializer. Additionally, further information on initializing certain
other components can also be found in the later, more advanced, guides.

At this point, however, we need to finish initializing our IDN, net, using the DV pairs
and action chunks that we defined earlier. This will give our agent, John, the ability

3 See the “Advanced Customization” tutorial (located in the “Customizations” section of the “Tutorials”
folder) for details on how to implement a custom component

http://msdn.microsoft.com/en-us/library/ee817667.aspx
http://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx

 7

to choose actions based upon the sensory information it receives from the world.
The four lines below accomplish this:

net.Input.Add(hi);
net.Input.Add(bye);

net.Output.Add(sayHi);
net.Output.Add(sayBye);

First, we begin by specifying two input nodes for the two DV pairs that represent the
salutations. To accomplish this, we call the Input.Add method. Similarly, we will
also add two output nodes to represent the two response actions by calling
Output.Add. Note that the number of nodes in the hidden layer is computed
automatically, which is fine for this example. In more advanced simulations,
however, you can take control of this number, but that is outside the scope of this
guide (see the documentation for more details).

As part of the initialization phase for any simulation, your job will be to create and
set up all of the functional objects you wish for your agent(s) to use. During
initialization these objects are open and available for you to configure using your
initialization code. Once initialized, the objects will exist in a special, temporary,
initialization area within the agent until you are finished setting them up. When you
are finished, you will need to signal to the agent that it can begin using the
functional object. When the agent is notified of this fact, it will remove the object
from the temporary location and wire it into the appropriate container (e.g., the
bottom level of the ACS in our current example). At that point, in most cases, you
will NOT be able to make additional changes to that functional object (except to
“tune” its parameters). In the Clarion Library, this concept is called “committing.” All
functional objects in the Clarion Library MUST be “committed” to an agent after
they have been initialized. Committing a functional object makes it “immutable” (i.e.,
“locked” or read only). You should not attempt to make changes after you make this
call.

At this point we have finished initializing net; however, we now need to tell John
that it can begin using the network. To signal to our agent that we have completed
the initialization of net we make the Commit call:

John.Commit(net);

Tweaking Parameters

The final initialization that is usually performed is parameter tweaking. The Clarion
technical specification (which can be found on Ron Sun’s website) contains a list of
default settings for the various mechanisms described by the Clarion theory.
However, you will probably find that, in many cases, these settings do not provide
you with the optimal results for your task. In such cases, you will likely want to tune
some of the parameters that are introduced in this tutorial.

http://codebetter.com/patricksmacchia/2008/01/13/immutable-types-understand-them-and-use-them/
http://www.cogsci.rpi.edu/~rsun/clarion-pub.html

 8

We will discuss how to tweak parameters in the next guide (i.e. the “Intermediate
ACS Setup” tutorial located in the “Intermediate Tutorials” section of the “Tutorials”
folder). However, for the Simple Hello World task, the following parameter settings
are used to optimize the agent’s performance:

net.Parameters.LEARNING_RATE = 1;
John.ACS.Parameters.PERFORM_RER_REFINEMENT = false;

Running a Simulation (& Continued Walkthrough)

In addition to initializing the world and agents, it is also the job of a simulating
environment to act as the intermediary between the agent and the world during the
actual running of a task.

In general, the simulating environment needs to handle the following
communications:

1. Specifying to an agent the sensory information it perceives on a given
perception-action cycle

2. Capturing and recording the action that is chosen by an agent

3. Updating the state of the world (if necessary) based on an agent’s actions

4. Providing feedback to an agent as to the “goodness” or “badness” of its
actions

5. Tracking the performance of the agent (for the sake of reporting results at
the end of the task)

Now that the world and agent have been set up, it is time to give John a means for
interacting with the world. This is where the bulk of our simulation code actually
comes into play.

//Run the task
Console.WriteLine("Running the Simple Hello World Task");
Console.SetOut(sw);

Random rand = new Random();
SensoryInformation si;

ExternalActionChunk chosen;

The above lines mainly set up some variables that will be useful as part of running
the simulation: a random number generator (rand) for choosing the configuration
of the sensory information, a sensory information pointer to hold onto the sensory
information for the current perception-action cycle, and a variable named chosen to
capture the action chosen by the agent.

The next line begins the major body of the task:

 9

The for loop (above) is in charge of the “flow” for the task. Inside this loop, the
sensory information is set up for each perception-action cycle (i.e., each trial), the
chosen action is captured, feedback is given, and the agent’s performance is
recorded.

Initializing the Sensory Information

The first thing we must do on any given trial is get a sensory information object. The
code below handles this request:

si = World.NewSensoryInformation(John);

We obtain sensory information objects from the world by calling the
NewSensoryInformation method and specifying the agent for whom the sensory
information is intended. Note that, while it isn’t particularly pertinent for the
present task, sensory information objects cannot be shared between agents. This is
necessary because the sensory information object not only tracks the state of the
world (as seen by that agent), but it also tracks the “internal meta information” of an
agent (i.e., the state of its goals, working memory, drives, etc.). If you would like to
“share” a certain configuration of the world between two agents, an overload for the
NewSensoryInformation method exists that will copy the configuration of a
sensory information object into a new sensory information object (for the specified
agent).

These next lines in the simulation are used to decide on the configuration for a
sensory information object:

//Randomly choose an input to perceive.
if (rand.NextDouble() < .5)
{
 //Say "Hello"
 si.Add(hi, hi.MAXIMUM_ACTIVATION);
 si.Add(bye, bye.MINIMUM_ACTIVATION);
}
else
{
 //Say "Goodbye"
 si.Add(hi, hi.MINIMUM_ACTIVATION);
 si.Add(bye, bye.MAXIMUM_ACTIVATION);
}

For our simple task, we are basically just “flipping a coin” to decide whether John
perceives someone saying “hi” or “bye.” More complex simulating environments will
likely have more complicated methods for determining the appropriate sensory
information. However, for this task, a random choice is sufficient.

for (int i = 0; i < NumberTrials; i++)
{
 ...
}

 10

We set up the sensory information object by adding descriptive objects to it (along
with an activation level for each object). This is done using the Add method.4 Also,
note that the agent’s “internal meta information” is pre-loaded into the sensory
information object, so if your simulation needs to set the activation for a part of the
agent’s “internal state”, you would do so by “setting” the activation rather than
“adding” it. The following is an example of how you could do this:

si[...] = 1;

Perceiving and Acting

The next lines initiate the agent’s perception of the sensory information and retrieve
the agent’s action (when one is chosen):

//Perceive the sensory information
John.Perceive(si);

//Choose an action
chosen = John.GetChosenExternalAction(si);

The Perceive method initiates the process of decision-making and
GetChosenExternalAction returns the action that is chosen by John (given the
current sensory information). Note that both of these methods can only be called
ONCE for any given sensory information object (or time stamp). This means that an
agent cannot perceive a sensory information object more than once, so you must
generate a new sensory information object each time you want your agent to
perceive something. It also means that your agent will not repeat itself, so make sure
that you either apply its action immediately or store its choice somewhere in the
simulating environment.

The above example represents the simplest method for initiating a perception-
action cycle. There are other, more complicated, ways to interact with an agent (e.g.,
using asynchronous operations5). These other methods are outside of the scope of
this guide, so we will leave further discussion on that topic to later, more advanced,
guides.

Processing Outcomes and Delivering Feedback

After the chosen action has been captured, the following if statement determines
the “consequences” of that action, records the outcome, and reward or punishes
John accordingly:

4 The +/- operators can also be used to add or remove items from the sensory information (as well
as the inputs/outputs of implicit components). Note, however, that the activation when using these
operations will always be set to the minimum activation.
5 Details on how to set up asynchronous operation can be found in the “Useful Features” tutorial
(located in the “Features & Plugins” section of the “Tutorials” folder)

 11

//Deliver appropriate feedback to the agent
if (chosen == sayHi)
{
 //The agent said "Hello".
 if (si[hi] == hi.MAXIMUM_ACTIVATION)
 {
 //The agent was right.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was correct");
 //Record the agent's success.
 CorrectCounter++;
 //Give positive feedback.
 John.ReceiveFeedback(si, 1.0);
 }
 else
 {
 //The agent was wrong.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was incorrect");
 //Give negative feedback.
 John.ReceiveFeedback(si, 0.0);
 }
}
else
{
 //The agent said "Goodbye".
 if (si[bye] == bye.MAXIMUM_ACTIVATION)
 {
 //The agent was right.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was correct");
 //Record the agent's success.
 CorrectCounter++;
 //Give positive feedback.
 John.ReceiveFeedback(si, 1.0);
 }
 else
 {
 //The agent was wrong.
 Trace.WriteLineIf(World.LoggingSwitch.TraceInfo, "Jon was incorrect");
 //Give negative feedback.
 John.ReceiveFeedback(si, 0.0);
 }
}

You should notice two primary things about this segment of code. First, notice that
we are able to compare our actions and sensory information objects using the
standard “==” comparator. All of the descriptive objects in the Clarion Library have
had their operations overloaded so that they act more like value types.6 Second, to
give John feedback, all we need to do is call the ReceiveFeedback method. Calling
this method automatically initiates a round of learning inside John. Even if we were

6 This is also the case for sensory information objects, and the input/output layers of implicit
components.

http://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

 12

using a Q-learning network instead of a simplified Q-learning network, we would
still only need to call ReceiveFeedback and the system will take care of the rest.7

Note also that the feedback on this simulation is between 0 and 1. Feel free to use
whatever scales you want (although see the “Intermediate ACS Setup” for additional
considerations regarding this). However, unless it is absolutely necessary, you
should try to stick to keeping your activations and feedback between 0 and 1. Using
this convention, a feedback of 1 would be tantamount to the highest level of positive
feedback possible, and 0 would equate to the highest level of negative feedback
(with .5 being more or less neutral feedback).

The remaining lines of code in the simulation basically just update the progress of
the simulation and report the results after all of the trials have completed.
Therefore, we will not go over these lines. However, once we have finished
processing all of our results, there is still one more thing that has to be done before
out simulation can be exited.

Killing an Agent

The last step we need to take in order to terminate our simulation is to terminate
our agent. For our current example, we kill John by calling the following line of
code:

John.Die();

This command initiates the termination of all of John’s internal processes (in other
words, he “dies”). Note that even though the agent’s processes are terminated, its
internal configuration is still maintained. This means you can still access/view or
“save” (i.e., serialize) the agent’s internal configuration even after the agent dies.8 If
we didn’t remember to kill John, then the application would not be able to close
because John’s internal mechanisms would still be running. However, once John is
dead, the simulation will be able to exit by returning from the Main method.

At this point, you should have everything you need to start writing your first
(simple) simulation. If you get stuck at any point, consult this guide again or take a
look at the API resource document (in the “Documentation” folder). When you are
ready to move on to the more complicated aspects of the ACS, the next tutorial
(“Intermediate ACS Setup”), can be found in the “Intermediate Tutorials” section of
the “Tutorials” folder.

In addition, you may also want to check out the “Useful Features” tutorial.9 It
contains information about some of the “built-in” enhancements of the Clarion

7 In the case that an implicit component expects new input (as is the case for Q-learning), the system
will actually wait until the perceive method is called on the next sensory information object before
performing learning.
8 Details on the latter can be found in the “Using Plugins” guide (located in the “Features & Plugins”
section).
9 Located in the “Features & Plugins” section of the “Tutorials” folder.

 13

Library. These enhancements have been designed to aid you in the development of
your simulating environments.

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

