Basic Customization

© 2013. Nicholas Wilson

Table of Contents

Customized Methods (Using Delegates) ... 1
Specifying Delegates as Parameters during Initialization..........cccoumssn. 2
Creating CuStom RULES......csssisssss s ssssssssssens 3

Using the SupportCalculator Delegate to Set Up an IRL Rule......coneneenneenneeneereeereeeneens 3
[nitializing the IRL RULE ..ttt ses e e 5
Using the SupportCalculator Delegate to Set Up a Fixed Rulecccoveeereerenecneenecnenens 5

A Note on the Generically Typed DimensionValuePair<DType,VType> Class .. 7
[nitializing the FiXed RULE ...ttt ess s sessessessnans 8
Generic EQUAtIONS .iimimsimsmsissssssisssasssssssssssssasssssssssnssnnss 9

Customized Methods (Using Delegates)

For several of the algorithms specified by the Clarion theory (e.g., eligibility
checking, rule refinement, match calculating, etc.), the library only implements the
default method, even though there may be other ways to perform those operations.
This being said, you may run into instances where you will need to designate a
different operation to replace the system'’s default behavior for a certain algorithm.
To address this need, the Clarion Library leverages C#’s delegate feature and defines
a series of “delegate signatures” that can be used to define your own custom
algorithms. Whenever a custom method is specified during initialization, the system
will use this method in lieu of its default behavior.

So let’s begin our tutorial on setting up and using delegates by looking at one of the
algorithms that you are most likely to want to customize: checking the eligibility of a
component. For customizing this method, the Clarion Library defines the
EligibilityChecker delegate. The signature for this delegate is:

public delegate bool EligibilityChecker
(ActivationCollection currentInput = null, ClarionComponent target = null);

The default eligibility checking algorithm for an ImplicitComponent is simply to
return the value of the component’s “ELIGIBILITY” parameter. While this provides
a simple way for you to manually prevent or allow a component to be used by the
system, it does not, otherwise, provide any additional logic for determining the
eligibility. For example, suppose you wanted to define some conditions for when a
component should be used and you want the system to be able to integrate this
“condition eligibility check”. To accomplish this, you need to implement a method

http://msdn.microsoft.com/en-us/library/ms173171%28v=VS.100%29.aspx

that will perform the eligibility checking operation and then inform the system of
the result of this check.

Implementing a custom eligibility checking delegate is accomplished by creating a
method within your code that uses the same inputs and returns a value of the same
type as is specified by the “delegate signature” (from above). The following pseudo-
code demonstrates how such a method might look:

public bool Custom EligibilityCheck (ActivationCollection currentInput = null,
ClarionComponent target = null)

{

... // Do operations to determine if the target component is eligible
return true or false;

}

After the method is set up, if we wanted a particular component to make use of it
when checking its eligibility, we would need to specify the method as a parameter
(in the form ofan EligibilityChecker delegate) during the initialization of that
component. The system will use our custom delegate method to check the eligibility
of any components with which it was initialized.

Specifying Delegates as Parameters during Initialization

For the most part, we specify delegate methods during the initialization (using the
AgentInitializer) of aninternal (functional) object. For example, suppose we
created a method called Custom_EligibilityCheck (in our own code) that
matches the signature for the EligibilityChecker delegate. The following code
demonstrates how our custom method could be specified as part of the initialization
of a BPNetwork in the bottom level of the ACS of the agent, John:

BPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
(John, BPNetwork.Factory, (EligibilityChecker)Custom_EligibilityCheck);

Note that we have explicitly casted our custom method to the correct delegate
specification (i.e, EligibilityChecker) during the initialization call. We do this
because it is required in order to pass a delegate using the dynamic type
designation. This being said, there are other ways to specify the type of our delegate
method. Specifically, we can “wrap” our delegate method in a property and use that
property instead of explicitly casting our custom method. From the previous
example, initializing the BPNetwork can alternatively be done as follows:

// During the initialization method:
BPNetwork net = AgentInitializer.InitializeImplicitDecisionNetwork
(John, BPNetwork.Factory, CustomEligibilityCheckerDelegate);
... // At some other point in your code:
public EligibilityChecker CustomEligibilityCheckerDelegate
{
get
{ return Custom_EligibilityCheck; }

You can use whichever method you’d prefer, however, we recommend using the
property method as it is generally cleaner and easier to follow.

Specifying custom delegate methods during the initialization of an internal object is
usually optional. To find out which delegates an internal (functional) object can use,
consult the API resource document (in the “Documentation” folder) for the factory
class that is used to generate that internal object.

At this point, we should point out that while custom delegates are mainly optional,
there some internal (functional) objects that do actually require you to implement
some custom delegates in order to be initialized.! In the following section, we will
look at two such internal objects: IRL rules, and fixed rules.

Creating Custom Rules

Depending on the specifics of the task you are simulating, you may discover that you
need to implement a rule whose dynamics are more complex than what can be
captured using a simple RefineableActionRule. To handle this case, the Clarion
theory defines two types of rules: IRL rules, and fixed rules.2

In the Clarion Library, we have implemented these rule types using two classes: the
IRLRule class, and the FixedRule class. These classes provide the large majority of
the mechanisms that are required for the rules. All you need to do is specify a single
custom delegate method in order to initialize either an IRL rule or a fixed rule. More
specifically, you need to define the method that is used for calculating the support
for the rule (via the SupportCalculator delegate). The system uses this support
measure to determine if a rule is eligible for action recommendation at a given time
step (based on a “partial match threshold”3). The signature for the
SupportCalculator delegate is as follows:

public delegate double SupportCalculator
(ActivationCollection currentInput, Rule target = null);

To help clarify this concept further, let’s look at a few examples where we may want
to use each of these rule types.

Using the SupportCalculator Delegate to Set Up an IRL Rule

In this section we will cover an example of where an TRLRule would be necessary.
One of the most common instances when this rule type is necessary is when a
certain factor of a rule’s condition is, itself, conditioned upon another factor of that
condition. For example, let’s assume that we have the dimension-value pairs: {dim1,
a}, {diml, b}, {dim2, c}, and {dim2, d} and the action: {do_something}. Now,
suppose we want to create the following rule:

1 Again, consult the API resource document of the factory class for this information

2 See Sun (2003) for more details
3 Captured by the PARTIAL_MATCH_THRESHOLD parameter

If{dim1, a} AND {dim2, c}, but NOT {dim2, d} then recommend the {do_something}
action, otherwise don’t recommend it

To capture the condition of this rule, we will need to write a custom method that can
be initialized using the SupportCalculator delegate signature. Using pseudo-
code, we could express this method as follows:

public double CalculateSupport_IRL(ActivationCollection currentInput, Rule r)
{

return the maximum activation between {diml, a} and {dim2, c} if both
{diml1, a} and {dim2, c} are specified as being part of the condition
while {dim2, d} is both specified as NOT being part of the condition
and is NOT activated in currentInput. Otherwise, ©

}

Note that the TRLRule class derives from the RefineableActionRule<> class, so
it has all of the same refinement capabilities as that rule type. Therefore, we can use
the Clarion Library’s built-in generalization and specialization processes to
automatically refine our IRLRule without needing any additional customizations be
set up to facilitate it. For instance, suppose that the system decided that the
following refined rule is better able to capture the dynamics of our current task
example:

If{dim1, a} OR {dim1, b} AND {dim2, c}, but NOT {dim2, d} then recommend the
{do_something} action, otherwise don’t recommend it

We want to make sure, when constructing custom delegate methods, that we
capture the most essential factors for your rule while still maintaining enough
flexibility to accommodate any refinements that may be made to the rule. For our
current example, the main factors are the co-activation of any dimension-value pair
in diml and the {dim2, c} dimension-value pair, but NOT the activation of the
{dim2, d} dimension-value pair. Therefore, our support calculator method should
capture these factors. Below is an example of how we might express this in C#:

public double CalculateSupport_ IRL(ActivationCollection currentInput, Rule r)
{
var dl1 = from d in currentInput
where d.WORLD_OBJECT.AsDimensionValuePair.Dimension == "diml" &&
r.GeneralizedCondition[d.WORLD_OBJECT] == true
select d;
return (r.GeneralizedCondition["dim2","c"] == true &&
currentInput["dim2", "c"] > @ &&
r.GeneralizedCondition["dim2", "d"] == false &&
currentInput ["dim2", "d"] == @)? dl.Max(e => e.ACTIVATION) : O;

}

To fully understand the above code, you need to be aware of the C# language
features that it is leveraging. The first line uses LINQ to get all of the dimension-
value pairs in dim1 that are specified as being part of the condition. The second line

http://msdn.microsoft.com/en-us/netframework/aa904594

(i.e., the return line) uses a combination of lambda expressions and the conditional
operator to return the maximum activation (which captures the OR operation) of
the dimension-value pairs that were found in the first line if the dimension-value
pair {dim2, c} isactivated and {dim2, d} is not. Alternatively, if the condition is
not true (i.e., either {dim2, c} isnotactivated or {dim2, d} is), then the second
line will return zero.

Now that we have setup our custom method, let’s look at how we would go about
initializing the TRLRule.

Initializing the IRL Rule

To setup the TRLRule we need to do three things. First, we need to initialize it:

// During the initialization method:
IRLRule rulel = AgentInitializer.InitializeActionRule
(John, IRLRule.Factory, some_action, SupportDelegate);

World.NewDimensionValuePair(“dim1”, “a”);
World.NewDimensionValuePair(“diml1”, “b”);
World.NewDimensionValuePair(“dim2”, “c”);
World.NewDimensionValuePair(“dim2”, “d”);

DimensionValuePair dv1
DimensionValuePair dv2
DimensionValuePair dv3
DimensionValuePair dv4

. // At some other point in your code:
public SupportCalculator SupportDelegate

{
get
{ return CalculateSupport_IRL; }

Second, we need to setup the initial condition for the rule:
// Elided rule initialization (see above)
rulel.GeneralizedCondition.Add(dvl, true);
rulel.GeneralizedCondition.Add(dv2, false);

rulel.GeneralizedCondition.Add(dv3, true);
rulel.GeneralizedCondition.Add(dv4, false);

Finally, we need to commit the rule:

John.Commit(rule);

That is everything you need to do to setup an IRLRule. So let’s turn our attention
now to an example of how to setup a FixedRule.

Using the SupportCalculator Delegate to Set Up a Fixed Rule

The process for setting up a FixedRule is very similar to setting up an IRLRule. A
good example of where we might want to use a FixedRule is when part of the
algorithm for determining the support of a rule requires that we perform some sort
of mathematical translation on parts of the SensoryInformation. For instance,

http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/ty67wk28%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/ty67wk28%28v=VS.100%29.aspx

let’s suppose we want to setup the following rule, which determines whether a
“carry-over” operation is needed when performing addition:

If {operator, +} and {digit1l, x} + {digit2, y} > 9, then recommend the {carry-
over} action, otherwise don’t recommend it.

We capture the condition of this rule within our custom delegate method. The
following cod demonstrates how we would do this in pseudo-code:

public double CalculateSupport_ FR(ActivationCollection currentInput, Rule r)

{
return 1, if {operator, +} is activated and {digitl, x} + {digit2, y} > 9
Otherwise, ©

}

While it is a little longer, expressing the pseudo-code in C# would look something
like this:

public double CalculateSuppot_ FR(SensoryInformation currentInput, Rule r)
{

if (currentInput[“operator”, "+"] > @)

{
var d1 = (from d in currentInput
where d.WORLD_OBJECT.AsDimensionValuePair.Dimension == "digit1l"
select d).OrderByDescending(e => e.ACTIVATION).First();
var d2 = (from d in currentInput
where d.WORLD_OBJECT.AsDimensionValuePair.Dimension == "digit2"
select d).OrderByDescending(e => e.ACTIVATION).First();
if (((int)d1.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) +
((int)d2.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) > 9)
return 1;
else return 9;
}
else

return 0;

}

The LINQ queries (i.e., the first 2 lines inside of the first if statement) are used to
find the maximally activated digits (represented as dimension-value pairs). Note
that we assume, in this example, that only one digit will be activated for each
dimension, so getting the First value from the dimension (after it has been sorted
in descending order by activation) should give us digits x & y (from the pseudo-
code). The first if statement checks to see if the + operator is activated in the
SensoryInformation. The second if statement checks to see if the sum of the two
digits will require that the carry-over action be performed and will return 1 (i.e.,
the action should be recommended) if it does, or O (i.e., the action shouldn’t be
recommended) if it does not.

A Note on the Generically Typed DimensionValuePair<DType, VType> Class

You may have noticed the following from the example we are using to demonstrate
how to set up a FixedRule:

Value.AsIComparable

Beginning with version 6.1.0.7 of the Clarion Library, dimension-value pairs actually
come in two flavors:

e The standard DimensionValuePair class
e Agenerically typed DimensionValuePair<DType,VType> subclass

Although this is the case, you likely have not realized it until this point, since the
vast majority of your interaction with the Wor1ld class automatically gives you the
generically type DimensionValuePair<DType,VType>. This generically typed
DimensionValuePair<DType,VType> is very useful as it significantly simplifies
your interaction with dimension-value pairs by reducing the amount of explicit
casting that is necessary. For example, suppose we did the following:

World.NewDimensionValuePair("Digit", 1)

If we were to subsequently call the Dimension or Value properties of the
DimensionValuePair<DType,VType> object thatis returned by that method, the
dimension or value that we will get back will already be cast as the appropriate type
(i.e, asa string or an int respectively). This is the case whenever working with
generically typed dimension-value pairs.

While this is certainly a very useful addition, the primary reason that we added the
generically type DimensionValuePair<DType,VType> class, was to enable values
of different types to inhabit the same dimension. This has been accomplished by
implementing a special “wrapper” class (called V) within the standard
DimensionValuePair class. This wrapper class has specially overloaded
IComparable methods that allow differently typed values to be compared using
their ToString() representations. While there are MANY benefits to implementing
this, the downside is that calling the Value property of the standard
DimensionValuePair (e.g., when using the AsDimensionValuePair property of
the IWorldObject interface) will actually return the V class “wrapper” instance as
opposed to the underlying IComparable value itself (which is what is returned by
the Value property of DimensionValuePair<DType,VType>).

We have gotten around this issue by defining a property, called AsIComparable,
within the V class that exposes the underlying IComparable value. Note, however,
that you will likely also have to explicitly cast this value back to its appropriate type
to make use of it.# The following example (taken from the previous FixedRule

4+ We acknowledge that this solution is “suboptimal”, however, unless (or until) Microsoft decides to
allow custom implicit casting to interfaces or (better yet) allows custom down casting in C#, this is
the best solution we could come up with.

example) demonstrates how we might go about exposing (and explicitly casting) the
underlying IComparable value when working with the standard
DimensionValuePair class:

if (((int)d2.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) +
((int)d2.WORLD_OBJECT.AsDimensionValuePair.Value.AsIComparable) > 9)
return 1;
else return 9;

Now that we have addressed this point, let’s look at how we might go about
initializing a FixedRule.

Initializing the Fixed Rule

Setting-up the FixedRule is essentially the same process as it was for the IRLRule:

// During the initialization method:
FixedRule rule = AgentInitializer.InitializeActionRule

(John, FixedRule.Factory, carry_action, SupportDelegate);
John.Commit(rule);

. // At some other point in your code:
public SupportCalculator SupportDelegate

{
get
{ return CalculateSupport_FR; }

Note that, since fixed rules are not refineable, we technically do not need to specify a
condition for them. We call these types of fixed rules “condition-less.” In addition, by
default, fixed rules are also not deletable (e.g., via density considerations®). In
general, you will want to use a fixed rule to capture the “one-shot-learning”
paradigm. That is, fixed rules are usually obtained in some sort of explicit fashion
(e.g., via instruction).

This concludes the basic customization tutorial. You should now have everything
you need to know in order to do basic customizations using delegates within the
Clarion Library. Feel free to explore the documentation to discover all of the places
throughout the system where custom delegate methods can be used. Using delegate
methods is a great way to customize your simulations without needing to “reinvent
the wheel”, so to speak.

However, if you find that you have reached the limit of what custom delegates can
provide or you feel like taking on a challenge, then you should know that you can
implement your own customized internal (functional) objects (e.g., implicit
components, drives, rules, etc.). Details on how to do this can be found in the
“Advanced Customization” tutorial. However, be forewarned that implementing a
custom internal (function) object is NOT a simple process. Therefore, you should
have a thorough understanding of the Clarion theory as well as significant

5 Although this can be enabled by toggling the DELETABLE_BY_DENSITY parameter

experience working with the Clarion Library before endeavoring to take on this sort
of customization.

Generic Equations

It is not uncommon that, during the development and tuning of your task, you may
find it both quicker and more preferable to temporarily “shortcut” some of the more
laborious aspects of initialization (e.g., pre-training implicit components such as
neural networks) for the bottom level of an agent’s subsystems. Frequently, these
implicit components are simply expected to report the results of an already known
equation. For this sort of event, the Clarion Library provides GenericEquations,
which can easily be setup and “plugged into” the bottom level anywhere within your
agent. Specifically, this component makes use of the Equation delegate in order
to allow you to easily create your own, custom equation. The signature for this
delegate is:

public delegate void Equation
(ActivationCollection input, ActivationCollection output);

As was the case for the other basic customizations (discussed previously), to
implement a custom equation, all you need to do is define a method within your
own code that conforms to the above signature and the Clarion Library will then be
able to use that method to set the activations for the “nodes” on the output layer
(given the specified input).

For example, let’s suppose that we want to create a GenericEquation that can be
used to solve a simple linear equation (i.e., = X). We can accomplish this using the
following method:

public void LinearEquation
(ActivationCollection input, ActivationCollection output)

{
¥

output["Variable", "Y"] = input["Variable", "X"];

You should note that the GenericEquation class conforms to the library’s standard
convention of transforming/bounding activations between 0 and 1. However, you
can specify your own range for your equation by simply changing
Parameters.MIN_ACTIVATION and Parameters.MAX_ACTIVATION (found by
using the Parameters property in the GenericEquation class). By setting these
parameters, both the input and output that is passed to your delegate method will
be automatically transformed/bounded to between your specified range.

After we have created our delegate method, all we need to do in order to use it is
provide it as a parameter during the initialization of a GenericEquation. For
example, suppose we wanted to use the simple linear equation in the bottom level of
the ACS for our agent, John. This could be accomplished as follows:

6 Located in the Clarion.Framework.Extensions namespace

GenericEquation eq = AgentInitializer.InitializeImplicitDecisionNetwork
(John, GenericEquation.Factory, (Equation)LinearEquation);

As areminder, in order to complete the initialization of our GenericEquation, we
also need to define the inputs and outputs, as well as “commit” the component to the
agent. Taken together, the following code demonstrates how we might setup and
initialize the simple linear equation (with a range between +10) in our agent, John:

public void InitializeAgent()
{
DimensionValuePair x = World.NewDimensionValuePair("Variables", "X");
DimensionValuePair y = World.NewDimensionValuePair("Variables", "Y");
Agent John = World.NewAgent("John");
. //Elided additional agent initialization
GenericEquation eq = AgentInitializer.InitializeImplicitDecisionNetwork
(John, GenericEquation.Factory, (Equation)LinearEquation);

eq.Input.Add(x);
eq.Output.Add(y);

eq.Parameters.MIN_ACTIVATION
eg.Parameters.MAX_ACTIVATION

-10;
10;

John.Commit(eq);

}
//Elided code for running the task

public void LinearEquation
(ActivationCollection input, ActivationCollection output)

{
}

output["Variable", "Y"] = input["Variable", "X"];

Using the GenericEquation can save valuable time while in the debugging and
tweaking phases of developing your task. However, keep in mind that ultimately you
will want to replace these “shortcuts” with the actual pre-trained bottom level
constructs that are defined within the Clarion theory (e.g., a backpropagation neural
network, or BPNetwork). Note that, in order to help simplify these sorts of pre-
training processes, the Clarion Library provides a very useful tool, called the
ImplicitComponentInitializer?”. Details on how to use the
ImplicitComponentInitializer can be found in the Useful Features tutorial
(located in the Features & Plugins section of the Tutorials folder).

Remember, as always, if you have any questions, want to submit a bug, or make a
feature request, please feel free to post on our message boards
(http://www.clarioncognitivearchitecture.com) or email us at
clarion.support@gmail.com and we will do our best to respond back to you as
quickly as possible.

7 Located in the main Clarion namespace

10

http://www.clarioncognitivearchitecture.com/
mailto:clarion.support@gmail.com

